Читаем Металлы в живых организмах полностью

Хлорофилл очень похож на гем: его молекула также содержит порфириновый цикл

Отличие хлорофилла от гема заключается прежде всего в том, что хлорофилл — это комплексное органическое соединение магния, а не железа (как гем). Кроме того, в молекуле хлорофилла к порфириновому циклу присоединен еще и высокомолекулярный спирт — фитол. Известно несколько видов хлорофилла, но основной порфириновый каркас сохраняется во всех его видах. Есть и еще одно отличие гема от хлорофилла. Как видно из схемы, в молекуле хлорофилла, кроме типичных для порфирина четырех пиррольных колец, имеется дополнительный пятый цикл (V), содержащий атом водорода, карбонильную группу С=O и карбометоксильную группу . В целом вся сложная макроциклическая система имеет ароматический характер; термин "ароматический" отнюдь не связан с каким-либо запахом — он указывает на сходство в состоянии электронов этого макроцикла и электронов ароматических углеводородов (а бензол и его гомологи действительно имеют легкий специфический запах). Часть электронов атомов углерода и азота порфиринового кольца — π-электроны — являются общими, так что внутри макроцикла существует своеобразный круговой ток (как и в бензоле).

Атом водорода в цикле V активно вступает в различные реакции обмена.

Исследования свойств хлорофилла показали, что атом магния не находится строго в плоскости макроцикла, а выведен из этой плоскости, располагаясь над ней. Если хлорофилл растворить в жидкости, молекулы которой имеют полярное строение, то молекула растворителя присоединяется к магнию за счет своей пары электронов (такие молекулы называют электронодонорными)[7]. Если же среда, окружающая хлорофилл, неполярна, то молекулы хлорофилла соединяются друг с другом, причем роль электронодонорной группы выполняет группа >С=O цикла V (>С=O... Mg). В бензольном растворе существуют, например, двойные молекулы хлорофилла; в алифатических углеводородах, которые очень слабо присоединяются к магнию, образуются даже частицы, состоящие из десяти молекул хлорофилла. В воде хлорофилл практически нерастворим. Однако молекулы воды связывают молекулы хлорофилла вместе таким образом, что пара электронов атома кислорода воды взаимодействует с атомом магния одной молекулы, а атомы водорода воды образуют водородные связи с группами >С=O и -СООН другой (на схеме символ Сhl обозначает молекулу хлорофилла):

Пара электронов атома кислорода воды взаимодействует с атомом магния одной молекулы, а атомы водорода воды образуют водородные связи с группами >С=O и -СООН другой

В результате возникают очень большие агрегаты частиц хлорофилла (коллоидные частицы). Следовательно, именно особенности строения макроцикла хлорофилла (наличие пятого цикла) и определяют его способность образовывать крупные скопления — агрегаты — тесно связанных частиц.

Свет действует на агрегаты хлорофилл — вода — хлорофилл, вызывает отделение электрона от одной из частиц комплекса, вода обеспечивает разделение зарядов.

В самой общей форме работу фотосинтетического механизма можно представить следующим образом. Молекула хлорофилла помещается между молекулами, способными присоединять и отдавать электроны. Свет, действуя на хлорофилл, переводит его электроны на более высокие энергетические уровни — свет поглощается хлорофиллом. (Возбужденное состояние обозначено на схеме звездочкой над символом хлорофилла Chl*). Затем возбужденный электрон выбрасывается молекулой хлорофилла и переходит к веществу, которое способно его принять, — так называемому акцептору электронов, и почти одновременно хлорофилл получает электроны от другого вещества — донора электронов:

Работа фотосинтетического механизма

Здесь D — донор, А — акцептор электронов; hv — поглощаемый хлорофиллом квант света; Chl — хлорофилл.

Такие акты совершаются очень быстро: за одну секунду на солнечном свету происходит около 1500 вспышек. Между донором и акцептором поток электронов совершает круговой путь, расходуя свою энергию на разложение воды, образование АТФ и НАДФ*Н. Эта приближенная картина уточнялась в течение многих лет, но и поныне не все ее детали достаточно ясны.

В фотосинтетическом аппарате растений действуют две системы переносчиков и содержится хлорофилл двух видов, немного различающихся между собой. Свет с большей длиной волны (700 нм) действует на электроны хлорофилла типа а (система, обозначенная на рис. 22 цифрой I). Другая система (обозначенная цифрой II) содержит хлорофилл b и фикобилиновые пигменты. Она поглощает свет с меньшей длиной волны (680 нм). Именно в системе II разлагается вода и выделяется кислород. В каждой системе имеется по 200-250 молекул хлорофилла; только одна из них (в системе II), получая энергию фотона, передает электрон дальше — к веществу Q, остальной хлорофилл работает как светоулавливающее устройство.

Перейти на страницу:

Все книги серии Мир знаний

Похожие книги

Происхождение мозга
Происхождение мозга

Описаны принципы строения и физиологии мозга животных. На основе морфофункционального анализа реконструированы основные этапы эволюции нервной системы. Сформулированы причины, механизмы и условия появления нервных клеток, простых нервных сетей и нервных систем беспозвоночных. Представлена эволюционная теория переходных сред как основа для разработки нейробиологических моделей происхождения хордовых, первичноводных позвоночных, амфибий, рептилий, птиц и млекопитающих. Изложены причины возникновения нервных систем различных архетипов и их роль в определении стратегий поведения животных. Приведены примеры использования нейробиологических законов для реконструкции путей эволюции позвоночных и беспозвоночных животных, а также основные принципы адаптивной эволюции нервной системы и поведения.Монография предназначена для зоологов, психологов, студентов биологических специальностей и всех, кто интересуется проблемами эволюции нервной системы и поведения животных.

Сергей Вячеславович Савельев , Сергей Савельев

Биология, биофизика, биохимия / Зоология / Биология / Образование и наука