Читаем Металлы в живых организмах полностью

Хлорид меди CuCl2 высушенный, т. е. безводный, окрашен в светло-коричневый цвет. Бросим щепотку этой соли в воду, получится раствор голубой окраски. Ионы хлора бесцветны, голубую окраску надо приписать соединению иона меди и молекул воды. Проверим это. Попробуем заменить воду иным растворителем, например ацетоном; если голубая окраска свойственна водному соединению, то в ацетоне должна наблюдаться другая окраска, независимо от того, реагирует ли ион меди с ацетоном или нет. Хлорид меди растворяется в ацетоне, образуя раствор зелено-коричневого цвета. При добавлении в него избытка воды раствор делается голубым. Все это убеждает нас в том, что ионы металла с водой (и, вероятно, с ацетоном) образуют какие-то соединения. Еще Д. И. Менделеев — творец сольватной теории растворов — указывал на бесспорные признаки химической реакции в процессе растворения многих веществ. Измерения обнаруживают и выделение теплоты при растворении безводных солей: безводные хлорид и сульфат меди сильно разогреваются при добавлении к ним воды. С другой стороны, если попробовать удалить воду из раствора сульфата меди, то можно получить красивые синие кристаллы, имеющие состав CuSO4*5H2O. Для того чтобы удалить и эти оставшиеся молекулы воды (четыре из них, как доказано, окружают ион меди и одна соединена с сульфат-ионом), придется сильно нагреть кристаллы; тогда они, теряя воду, становятся почти белыми.

Все это позволяет сделать уверенный вывод, что молекулы способны прочно присоединяться к ионам меди, заметно изменяя их свойства, в частности окраску. Молекулы воды присоединяются и к ионам других металлов — кальция, железа, магния, натрия и др. При медленном испарении воды из растворов солей удается получить кристаллы, содержащие соль и определенное количество молекул воды на каждую молекулу соли. Выделенные в чистом виде, такие соединения носят название кристаллогидратов. К кристаллогидратам относят соединения: CuCl2*2H2O, CuSO4*5H2O, а также СаСl2*6Н2O, CaSO4*2H2O, Na2SO4*10H2O и др.

Но не только вода, а и другие соединения могут взаимодействовать с ионами металлов в растворах. Добавим, например, к водному раствору какой-либо соли меди (можно взять раствор хлорида СuСl2) избыток водного аммиака. Сначала появится зеленовато-голубой осадок, затем он быстро исчезнет, а жидкость приобретет красивый темно-синий цвет. Что произошло? Первые порции водного аммиака вступили в реакцию с хлоридом меди, и получился осадок гидроксида меди (II):

Реакция водного аммиака с хлоридом меди

Растворение осадка и появление синей окраски указывают на развитие другой реакции. В результате взаимодействия гидроксида с молекулами аммиака, которые всегда имеются в водном растворе аммиака, получилось соединение — аммиакат меди:

Взаимодействие гидроксида меди с молекулами аммиака

Это соединение способно диссоциировать, отщепляя ионы ОН-:

Диссоциация аммиаката меди

Молекулы аммиака прочно связаны с ионами меди, и синяя окраска — это свойство именно комплексного иона Cu(NH3)24+. Следовательно, к ионам металлов могут присоединяться не только молекулы воды, но и молекулы других соединений, в частности аммиака.

Обширные исследования таких комплексных молекул и ионов привели ученых к выводу, что комплексообразование представляет собой одно из самых распространенных явлений в химии металлов. Было установлено, что практически ионы всех металлов способны образовывать комплексные соединения с различными молекулами органических и неорганических соединений. Известны, например, следующие соединения: Со(NН3)6Сl2, Pt (NH3)Cl2, Сr(NН3)6Сl3, [NiEn3]Cl2 и др. (Символ Еn обозначает молекулу этилендиамина H2N — CH2 — СН2 — NH2.) Прочно связанные молекулы аммиака или этилендиамина в этих соединениях размещены в непосредственной близости от центрального иона металла — их называют лигандами (что значит "связанные").

Лиганды могут нести электрический заряд, т. е. быть ионами. В таких случаях заряд всего комплексного иона получается алгебраическим суммированием заряда всех лигандов и заряда центрального иона. Примером может служить комплексное соединение иона железа (II) с цианид-ионами CN-. Комплекс [Fe(CN)6]4- имеет отрицательный заряд, так как центральный ион заряжен двумя положительными, а шесть ионов-лигандов несут шесть отрицательных зарядов. Комплексный ион может удерживать четыре однозарядных катиона, например четыре иона калия. Выделенная из раствора комплексная соль имеет состав K4[Fe(CN)6].

Число лигандов, располагающихся в непосредственной близости от центрального иона, называют координационным числом иона (сокращенно его обозначают КЧ). Часто встречаются координационные числа 2, 4, 6; числа 3, 5, 7 встречаются крайне редко. Известны и очень большие координационные числа — 8, 12, 18. В таблице 3 приведены некоторые примеры типичных координационных соединений[1] с различными КЧ.

Перейти на страницу:

Все книги серии Мир знаний

Похожие книги

Происхождение мозга
Происхождение мозга

Описаны принципы строения и физиологии мозга животных. На основе морфофункционального анализа реконструированы основные этапы эволюции нервной системы. Сформулированы причины, механизмы и условия появления нервных клеток, простых нервных сетей и нервных систем беспозвоночных. Представлена эволюционная теория переходных сред как основа для разработки нейробиологических моделей происхождения хордовых, первичноводных позвоночных, амфибий, рептилий, птиц и млекопитающих. Изложены причины возникновения нервных систем различных архетипов и их роль в определении стратегий поведения животных. Приведены примеры использования нейробиологических законов для реконструкции путей эволюции позвоночных и беспозвоночных животных, а также основные принципы адаптивной эволюции нервной системы и поведения.Монография предназначена для зоологов, психологов, студентов биологических специальностей и всех, кто интересуется проблемами эволюции нервной системы и поведения животных.

Сергей Вячеславович Савельев , Сергей Савельев

Биология, биофизика, биохимия / Зоология / Биология / Образование и наука