Читаем Метод определения энергоэффективности технологий и механизации горных работ по добыче полезных ископаемых открытым способом полностью

Пользуясь принятыми выше зависимостями расчета энергопоглощения при разрушении горных пород, можно посчитать удельное энергопоглощение в процессе бурения в Дж/кг при тех же условиях по следующей формуле:

где сж - предел прочности породы на сжатие при шарошечном или ударном бурении, Па;

lcкв. - глубина скважины, м;

- часть энергопоглощения горной породы при бурении, приходящегося на единицу объёма взрываемого блока,

nскв. - количество скважин взрываемого блока;

Sскв. - площадь скважины, м2;

h - высота уступа, м;

A - ширина заходки, м.

Выемочно-погрузочный процесс.

В выемочно-погрузочном процессе горная масса при переходе из одного состояния (развал горной массы) в другое (захват и перемещение в транспортный сосуд) поглощает энергию.

В процессе черпания горная масса оказывает сопротивление. Чем больше степень дробления и коэффициент разрыхления, тем меньше сопротивление.

Второй операцией в цикле погрузочного процесса является подъём горной массы для погрузки. Все существующие погрузочные машины совмещают процесс черпания с подъёмом на уровень погрузки.

Подъем ковша на уровень разгрузки связан с затратами энергии на преодоление единицы веса горной породы в ковше.

Расчетную зависимость энергопоглощения выемочно-погрузочного процесса на единицу горной массы в Дж/кг можно представить следующим образом:

Первое слагаемое представляет собой выражение для расчёта энергопоглощения при преодолении сопротивления горной массы внедрению ковша. В нём не учитывается скорость, с которой перемещается ковш во время черпания, так как пределы изменения ее на выемке и вносимая при этом погрешность незначительны.

Второе слагаемое представляет собой выражение для расчёта энергопоглощения в процессе поворота со средней скоростью ковша для разгрузки, т.е. своего рода преодоление сопротивления инерции.

Третье и четвёртое слагаемые выражают энергопоглощение в процессе перемещения ковша к месту и на уровень разгрузки,

где F - сила сопротивления перемещению ковша. По проф. Н.Г. Домбровскому она может быть определена F = kc B c;

kc - удельное сопротивление горной породы копанию, кг/см2 (для хорошо взорванных пород kc= 2,25-2,50 кг/см2);

В - ширина ковша , см;

c - толщина стружки, см (0,33В);

- длина пути, на котором происходит заполнение ковша (для ковшевого экскаватора 2/3 hч , для многочерпакового экскаватора hуступа/Sin).

hч – высота черпания экскаватора.

Р - вес породы в ковше, P = (Ек )/kр ;

Ек - вместимость ковша, м3;

kр -коэффициент разрыхления;

- плотность породы, кг/м3;

vп - скорость перемещения ковша к месту разгрузки (vп = 5 - 11 м/сек - большее для вскрышных экскаваторов);

g - 9,8 м/сек2 ;

l – расстояние перемещения ковша к месту разгрузки, м

hр - высота разгрузки экскаватора, м.

Для многоковшового и роторного экскаватора

о – основное сопротивление движению конвейерного транспорта, на экскаваторе, Н/kH;

L – расстояние перемещения по конвейеру на экскаваторе, м.

Процесс перемещения горной массы

Энергопоглощение горной массы в процессе перемещения транспортными средствами происходит в момент преодоления инерции и в процессе преодоления сопротивления во время движения. Если по пути перемещения происходит подъем горной массы, то энергопоглощение увеличивается на преодоление сопротивления от уклона для колесных видов транспорта и на величину Н подъема горной массы при других видах транспорта.

В общем виде выражение энергопоглощения единицы горной массы в процессе перемещения в Дж/кг может быть представлено следующим образом:

Эт = + oL +H.

где - энергопоглощение во время преодоления инерции;

V - скорость перемещения, м/сек;

о - основное сопротивление движению, Н/кН ;

L - длина перемещения, м;

H - высота подъема в процессе перемещения, м.

Конкретно для видов транспорта расчетные зависимости представляются в следующем виде.

Железнодорожный транспорт

Ет = +oL + iLi +rLr ..

где V - скорость движения транспорта, м/сек;

g - ускорение свободного падения, м/сек2;

o - основное сопротивление движению, Н/кН

(обычно 0,002-0,003 Н/кН);

L - расстояние перемещения, м.

С учетом движения на подъем

, м

L2 - длина горизонтальной части, м;

H2 - высота подъема, м;

i - сопротивление от подъема или уклона,

(равно уклону i = 0.0030.004);

Li - длина участка перемещения с уклоном

i - уклон трассы;

r - сопротивление на криволинейном участке пути:

для стационарных путей - 1300/1000R,

для забойных путей - 700/1000R.

R - радиус закругления, м;

Lr - длина участка криволинейного пути, м.

Автомобильный транспорт

Ет = V2/2g + oL + iL.

где о = 0,015-0,045 Н/кН - для главных откаточных дорог;

0,050-0,080 Н/кН - для забойных дорог;

0,080-0,300 Н/кН - для отвальных дорог;

i= i - аналогично железнодорожному транспорту, Н/кН.

Конвейерный транспорт

Ет = V2/2g + oL + Hк

где о=0,025-0,030, Н/кН ;

Нк - высота подъема горной массы в процессе перемещения конвейерным транспортом, м.

Расчётная формула для трубопроводного транспорта аналогична конвейерному транспорту.

Процесс отвалообразования

Перейти на страницу:

Похожие книги

Электроника для начинающих
Электроника для начинающих

В ходе практических экспериментов рассмотрены основы электроники и показано, как проектировать, отлаживать и изготавливать электронные устройства в домашних условиях. Материал излагается последовательно от простого к сложному, начиная с простых опытов с электрическим током и заканчивая созданием сложных устройств с использованием транзисторов и микроконтроллеров. Описаны основные законы электроники, а также принципы функционирования различных электронных компонентов. Показано, как изготовить охранную сигнализацию для защиты от проникновения в дом, елочные огни, электронные украшения для одежды, устройство преобразования звука, кодовый замок, автономную роботизированную тележку и др. Приведены пошаговые инструкции и более 500 наглядных рисунков и фотографий.Для начинающих радиолюбителей

Паоло Аливерти , Чарльз Платт

Радиоэлектроника / Технические науки
Компьютерные сети. 5-е издание
Компьютерные сети. 5-е издание

Перед вами — очередное, пятое издание самой авторитетной книги по современным сетевым технологиям, написанной признанным экспертом в этой области Эндрю Таненбаумом в соавторстве с профессором Вашингтонского университета Дэвидом Уэзероллом. Первая версия этого классического труда появилась на свет в далеком 1980 году, и с тех пор каждое издание книги неизменно становилось бестселлером и использовалось в качестве базового учебника в ведущих технических вузах. В книге последовательно изложены основные концепции, определяющие современное состояние и тенденции развития компьютерных сетей. Авторы подробнейшим образом объясняют устройство и принципы работы аппаратного и программного обеспечения, рассматривают все аспекты и уровни организации сетей — от физического до уровня прикладных программ. Изложение теоретических принципов дополняется яркими, показательными примерами функционирования Интернета и компьютерных сетей различного типа. Пятое издание полностью переработано с учетом изменений, происшедших в сфере сетевых технологий за последние годы и, в частности, освещает такие аспекты, как беспроводные сети стандарта 802.12 и 802.16, сети 3G, технология RFID, инфраструктура доставки контента CDN, пиринговые сети, потоковое вещание, интернет-телефония и многое другое.

А. Гребенькова , Джеймс Уэзеролл

Технические науки