Ярко это можно продемонстрировать на геометрических понятиях. Любой прямоугольник имеет четыре стороны, четыре угла, равные диагонали. Но без третьего свойства он существовать не может: все четыре угла – прямые. А квадрат имеет четыре прямых угла, равные диагонали, четыре стороны. Существенное свойство – все стороны равны.
Следовательно, когда говорят о математическом понятии, то подразумевают множество объектов, называемых одним словом или группой слов (термином). Если говорят о прямоугольниках, то это все те фигуры, у которых все четыре угла прямые, а квадраты – это прямоугольники, у которых все стороны равны.
Считается, что множество всех квадратов составляет объем понятия «квадрат».
Объем понятия – это множество всех объектов, которые обобщаются в понятии и обозначаются одним термином.
Любое понятие имеет содержание.
Содержание понятия – это множество всех существенных свойств объекта, отраженных в этом понятии.
Объем понятия прямоугольник – это множество различных прямоугольников, а в его содержание входят такие свойства прямоугольника:
– «иметь четыре стороны»,
– «иметь четыре прямых угла»,
– «иметь равные противоположные стороны»,
– «иметь равные диагонали».
III
. Отношения между понятиямиМежду объемом понятия и его содержанием существует взаимосвязь: если увеличивается объем понятия, то уменьшается его содержание, и наоборот, с уменьшением объема понятия – увеличивается его содержание.
Например, объем понятия «квадрат» является частью объема понятия «прямоугольник», а в содержании, понятия «квадрат» содержится больше свойств, чем в содержании понятия «прямоугольник» («все стороны равны», «диагонали взаимно перпендикулярны», «диагонали равны» и другие).
Любое понятие нельзя усвоить, не осознавая его взаимосвязи с другими понятиями. Поэтому важно знать, в каких отношениях могут находиться эти понятия, и уметь устанавливать эти связи.
Понятия обозначают строчными буквами латинского алфавита:
Они могут находится в различных отношениях.
Если
Например: если
Если
1) Понятия рода и вида относительны: одно и то же понятие может быть родовым по отношению к одним понятиям и видовым по отношению к другим. Например: понятие «прямоугольник» – родовое по отношению к понятию «квадрат» и видовым по отношению к понятию «четырехугольник».
2) Для понятия прямоугольник существует несколько родовых понятий – «четырехугольник», «параллелограмм», «многоугольник». Среди них можно указать ближайшее – параллелограмм».
3) Видовое понятие обладает всеми свойствами родового понятия. Квадрат являясь видовым понятием по отношению к понятию «прямоугольник», обладает всеми свойствами, присущими прямоугольнику.
Отношения между понятиями, изображая объемы, можно показать с помощью кругов Эйлера.
Например:
а)
б)
в)
IV
. Определение понятийОпределение понятий – это логическая операция, с помощью которой раскрывается содержание понятия, либо устанавливается значение термина.