Читаем Методы расчета главных параметров карьера и комплекта оборудования для производства горных работ полностью

Экспериментальные исследования по определению зависимости производительности машин по процессам технологического потока от состава горной массы по крупности с учетом свойств сыпучей среды показывают, что изменение производительности от минимума до максимума экскавационных машин с шириной ковша В находится в интервале В/3 dср В/11 при величине размера негабарита >В/3.

Минимальные затраты по всем технологическим процессам в технологическом потоке с одноковшовым экскаватором обеспечиваются при среднем диаметре габаритной горной массы dср= В/6,5.

Развал взорванной горной массы по длине от бровки уступа должен быть минимальным, по высоте - безопасным. По правилам безопасности он должна быть равна высоте черпания, а при высокой степени разрыхления допускается 1,5h.

Объем взорванной горной массы в забое определяется из условия максимальной производительности технологического потока с учётом остановки во время взрывных работ.

Разрушение массива горных пород под действием взрыва заряда взрывчатого вещества является сложным физическим процессом, который определяется свойствами массива, взрывчатого вещества и параметрами технологии взрывного воздействия.

Управление взрывного воздействия для получения необходимого для экскавации горной массы базируется на энергетической связи результата разрушения с параметрами буровзрывных работ.

Учитывая монолитность и однородность по свойствам горной породы в блоке, необходимую степень его дробления, соотношение между пределом прочности материала на сжатие и растяжение необходимая энергия (Fдр.) для дробления определяется зависимостью

,

где сж.- предел прочности породы на сжатие, Па;

kд- коэффициент динамичности напряжения (kд = д/ст)

V - разрушаемый объем, м3;

Е – модуль упругости породы, Па;

n – степень дробления (n = Dо.м./dср.)

Dо.м - средний размер отдельности массива, м;

Энергия для получения требуемой по принятой технологии и технике степень разрыхления и формирования развала, допустимого по правилам безопасности определяется зависимостью

,

где - начальная скорость движения горной массы при взрыве ( по данным экспериментальных исследований ее можно принимать vо= 5410 м/с). Большие значения принимаются при использовании мощных взрывчатых веществ и малой плотности горной породы.

- коэффициент разрыхления горной массы в забое, = 1,1 4 1,4;

- плотность горной породы, кг/м3;

- расстояние от центра тяжести заходки массива до центра тяжести развала горной массы, м.

При разрушении массива скважинными зарядами

,

где с - расстояние от верхней бровки уступа до первого ряда скважин (по правилам безопасности не менее 3 м);

h - высота уступа, м;

- угол откоса уступа, градус;

- высота развала горной массы в забое, м;

- высота черпания экскаватора, м.

Сумма представляет собой энергию, которую необходимо затратить при подготовке горной массы.

По энергетической характеристике используемого взрывчатого вещества определяется удельный его расход (кг/м3), необходимый для дробления 1 м3 массива в нужной степени, получения заданных коэффициента разрыхления и параметров развала взорванной горной массы

,

где - удельная потенциальная энергия взрывчатого вещества, которая именуется в характеристике полной идеальной работой взрыва, Дж/кг.

- коэффициент полезного использования энергии взрывчатого вещества, который, по многочисленным исследованиям, составляет 0,04—0,06.

В развернутом виде эта зависимость имеет вид (кг/м3)

.

Анализируя эту зависимость, можно видеть, что удельный расход взрывчатого вещества увеличивается с увеличением прочностных свойств массива, степени дробления и величины развала горной массы после взрыва и уменьшается с увеличением энергии используемого взрывчатого вещества и коэффициента ее использования для дробления массива и формирования развала, необходимых параметров по технологии выемочно-погрузочных работ.

В карьере в конкретных природных условиях достижение необходимых параметров взорванной горной массы для горнотранспортного оборудования технологического потока обеспечивается регулированием параметров буровзрывных работ на карьере.

Параметры буровзрывных работ делятся на две группы.

Перейти на страницу:

Похожие книги

Теория струн и скрытые измерения Вселенной
Теория струн и скрытые измерения Вселенной

Революционная теория струн утверждает, что мы живем в десятимерной Вселенной, но только четыре из этих измерений доступны человеческому восприятию. Если верить современным ученым, остальные шесть измерений свернуты в удивительную структуру, известную как многообразие Калаби-Яу. Легендарный математик Шинтан Яу, один из первооткрывателей этих поразительных пространств, утверждает, что геометрия не только является основой теории струн, но и лежит в самой природе нашей Вселенной.Читая эту книгу, вы вместе с авторами повторите захватывающий путь научного открытия: от безумной идеи до завершенной теории. Вас ждет увлекательное исследование, удивительное путешествие в скрытые измерения, определяющие то, что мы называем Вселенной, как в большом, так и в малом масштабе.

Стив Надис , Шинтан Яу , Яу Шинтан

Астрономия и Космос / Научная литература / Технические науки / Образование и наука