Эта публикация вызвала появление заголовков в духе желтой прессы (“В почве полно супермикробов!”) и некоторую панику. Какое уж там осмотрительное использование антибиотиков! А не приносили ли мы факторы устойчивости к ним в наши дома и больницы на подошвах своей обуви? По словам Райта, вовсе нет. “Эти гены едва ли могут перескакивать непосредственно от стрептомицетов к болезнетворным бактериям”, — объясняет он. Во-первых, такие выделяющие антибиотики микроорганизмы, как стрептомицеты держат эти гены “защиты от самоубийства” надежно встроенными в свою главную хромосому. Прежде чем эти гены войдут в состав работающей в бактериальном мире системы обмена, они должны быть выделены и упакованы в мобильные генетические элементы, такие как плазмиды и транспозоны. Во-вторых, хотя гены устойчивости, обнаруженные Райтом у микробов из грязи, и оказались очень близки ко многим подобным генам, обнаруженным у болезнетворных бактерий, небольшие отличия в орфографии ДНК этих генов говорили о том, что свой переход из одной группы микроорганизмов к другой они совершили через посредников.
Всякий раз, когда ген передается от одного микроорганизма другому, в нем, как при игре в испорченный телефон, происходят небольшие изменения, отражающие “ДНК-диалект” каждого нового хозяина. А именно, ДНК любого организма — от бактерии до слона — отличается характерным для него содержанием ГЦ, то есть долей ДНК-букв, образуемых азотистыми основаниями гуанином и цитозином (которые вместе с аденином и тимином и составляют весь ДНК- алфавит). Бактерии рода Streptomyces отличаются одними из самых высоких показателей содержания ГЦ во всем царстве бактерий. Гуанин и цитозин составляют более 70 % всех азотистых оснований в ДНК стрептомицетов, в том числе и в их генах устойчивости. Когда же подобные гены обнаруживаются у таких болезнетворных бактерий, как энтерококки и стафилококки, содержание ГЦ в них оказывается близко к 50 %. При этом содержание ГЦ в “собственных” генах этих болезнетворных организмов еще ниже. И у стафилококков и у энтерококков оно составляет около 37 %. Эти соотношения указывают на то, что данные гены провели какое-то время в промежуточных организмах и содержание в них ГЦ постепенно менялось в направлении показателей, характерных для каждого нового хозяина.
“Ситуация, с которой мы здесь сталкиваемся, напоминает неполноту палеонтологической летописи, — говорит Райт. — У нас есть первое звено: почвенные микроорганизмы с их естественной устойчивостью. И у нас есть победнее звено: устойчивые к ванкомицину больничные интерококки. У них имеются одни и те же гены устойчивости. Но мы знаем, что тот путь, который позволил последним получить гены от первых, включал целый ряд промежуточных звеньев”.
С чего начать поиски этих промежуточных звеньев? Ясно, что активное использование антибиотиков в медицине сыграло здесь немалую роль. Кроме того, их активное использование в сельском хозяйстве, в особенности в корках для сельскохозяйственных животных, могло открыть для этих генов канал, ведущий напрямую на наш обеденный стол.
Что творится на фермах
“ЧУДО-ЛЕКАРСТВО” АУРЕОМИЦИН УСКОРЯЕТ РОСТ НА 50%
Специально для “Нью-Йорк тайме” Филадельфия. Золотистое вещество ауреомицин — спасительное лекарство из группы, известной под названием антибиотиков — оказалось одним из самых действенных среди открытых до сих пор веществ, ускоряющих рост, он дает лучший эффект, чем любой известный витамин.
Химики из фармацевтической компании LederleLaboratories Томас Джукс и Роберт Стокстад сообщили 9 апреля 1950 года о своем случайном открытии “эффектной" новой роли, которую могут играть антибиотики. Они полагали, что это явление “имеет огромные перспективы для выживания человечества в мире сокращающихся ресурсов и растущего народонаселения”. Всего пять фунтов неочищенного антибиотика, добавленные к тонне корма, повышали скорость роста поросят на 50 %. Сходные результаты были получены на цыплятах и телятах, которые благодаря этой добавке росли быстрее, чем когда-либо в истории животноводства.