Читаем Микрокосм. E. coli и новая наука о жизни полностью

При этом следует учитывать, что каждая E. coli, как правило, имеет лишь несколько молекул репрессора. Любой из них требуется всего несколько минут, чтобы найти lас — оперон и прекратить производство бета — галактозидазы. За короткие мгновения свободы оперон синтезирует лишь крохотное количество этого фермента, да и те немногие молекулы, которые все же успевают появиться, вскоре разрушаются специальными белками. Добавление небольшого количества лактозы не меняет положения вещей. Внутрь микроорганизма попадает слишком мало лактозы, чтобы надолго удержать репрессоры от подавления lас — оперона. Бактерия, как и прежде, не расщепляет лактозу.

Однако, если содержание лактозы в растворе продолжает повышаться, поведение E. coli внезапно изменяется и она начинает проявлять к ней активный интерес. Существует пороговая концентрация, за которой этот микроорганизм приступает к производству больших количеств бета — галактозидазы. Секрет такого превращения таится в одном из генов lac — оперона. Одновременно с бета — галактозидазой E. coli синтезирует еще один белок — пермеазу; этот белок встраивается в мембрану микроорганизма и переносит внутрь клетки молекулы лактозы. Когда lас — оперон бактерии, не желающей расщеплять лактозу, ненадолго включается, он производит и некоторое количество молекул пермеазы, которые начинают транспортировать лактозу внутрь микроорганизма. Дополнительные молекулы лактозы связывают большее количество молекул репрессора; lас — оперон включается и работает более длительное время, пока репрессор вновь его не заблокирует. Он произведет больше белков — и бета — галактозидазы для расщепления лактозы, и пермеазы для переноса лактозы внутрь. Возникает положительная обратная связь: чем больше становится пермеазы, тем больше внутрь клетки транспортируется лактозы, которая увеличивает количество пермеазы, которая, в свою очередь, транспортирует больше лактозы. Эта обратная связь переводит E. coli в новое состояние, в котором она производит бета — галактозидазу и расщепляет лактозу со всей доступной ей скоростью[12].

Теперь E. coli трудно будет заставить вернуться к прежнему существованию. Если концентрация лактозы снизится, пермеазная система тем не менее будет активно переносить ее внутрь бактериальной клетки. E. coli сможет обеспечить себя достаточным количеством лактозы, чтобы удерживать репрессоры от блокирования оперона, так что производство бета — галактозидазы и пермеазы будет продолжаться. И только когда концентрация лактозы упадет ниже критического уровня, репрессоры вновь возьмут верх. Они заблокируют лактозный оперон, и синтез выключится.

Такой переключатель, работающий с задержкой по времени, поможет нам разобраться в странных результатах экспериментов Новика и Уэйнера. Разная реакция на лактозу у двух генетически одинаковых E. coli может объясняться разной историей этих бактерий. Не расщепляющая лактозу бактерия сопротивляется включению, тогда как вошедшая во вкус сопротивляется выключению. И оба типа бактерий способны передавать свое состояние последующим поколениям. При этом передачи разных генов не происходит. Просто одни бактерии передают потомкам много встроенных в мембрану молекул пермеазы и много плавающих внутри клетки молекул лактозы. Другие не передают ни того, ни другого.

А если к подобному переключателю добавить неравномерное производство белков, то это и будет рецепт индивидуальности E. coli. Когда колония E. coli получает немного лактозы, то у некоторых бактерий сразу же возникает гигантский всплеск производства белков, кодируемых генами лактозного оперона. Бактерии преодолевают порог, начинают расщеплять лактозу и остаются в таком состоянии, даже если ее концентрация падает. Другие E. coli в ответ на появление лактозы не производят никаких белков и по — прежнему не могут утилизировать лактозу. Так генетически идентичные клоны обретают индивидуальность в результате случайных событий.

В создании индивидуальности E. coli участвует также дополнительный механизм передачи наследственной информации. К части бактериальной ДНК присоединяются так называемые метильные группы[13]. ДНК как бы покрывается этими молекулами, состоящими из атомов водорода и углерода, — метилируется[14]. Метильные группы изменяют реакцию генов E. coli на внешние сигналы. Они способны заблокировать тот или иной ген, не повредив его, на все время жизни бактерии. При делении E. coli передает схему расположения метильных групп своим потомкам. Известно, однако, что при определенных условиях микроорганизм способен очистить свою ДНК от метильных групп и заменить их новыми в других местах; почему так происходит, ученые пока не знают.

Перейти на страницу:

Все книги серии Библиотека фонда «Династия»

Ружья, микробы и сталь
Ружья, микробы и сталь

Эта книга американского орнитолога, физиолога и географа Джареда Даймонда стала международным бестселлером и принесла своему создателю престижнейшую Пулитцеровскую премию, разом превратив академического ученого в звезду первой величины. Вопрос, почему разные регионы нашей планеты развивались настолько неравномерно, занимает сегодня очень многих — по каким причинам, к примеру, австралийские аборигены так и не сумели выйти из каменного века, в то время как европейцы научились производить сложнейшие орудия, строить космические корабли и передавать накопленные знания следующим поколениям? Опираясь на данные географии, ботаники, зоологии, микробиологии, лингвистики и других наук, Даймонд убедительно доказывает, что ассиметрия в развитии разных частей света неслучайна и опирается на множество естественных факторов — таких, как среда обитания, климат, наличие пригодных для одомашнивания животных и растений и даже очертания и размер континентов. Приводя множество увлекательных примеров из собственного богатого опыта наблюдений за народами, которые принято называть «примитивными», а также из мировой истории, Даймонд выстраивает цельную и убедительную теорию, позволяющую читателю по-новому осмыслить скрытые механизмы развития человеческой цивилизации.

Джаред Даймонд , Джаред Мэйсон Даймонд

Культурология / История / Прочая научная литература / Образование и наука
Бог как иллюзия
Бог как иллюзия

Ричард Докинз — выдающийся британский ученый-этолог и популяризатор науки, лауреат многих литературных и научных премий. Каждая новая книга Докинза становится бестселлером и вызывает бурные дискуссии. Его работы сыграли огромную роль в возрождении интереса к научным книгам, адресованным широкой читательской аудитории. Однако Докинз — не только автор теории мемов и страстный сторонник дарвиновской теории эволюции, но и не менее страстный атеист и материалист. В книге «Бог как иллюзия» он проявляет талант блестящего полемиста, обращаясь к острейшим и актуальнейшим проблемам современного мира. После выхода этой работы, сегодня уже переведенной на многие языки, Докинз был признан автором 2006 года по версии Reader's Digest и обрел целую армию восторженных поклонников и непримиримых противников. Споры не затихают. «Эту книгу обязан прочитать каждый», — считает британский журнал The Economist.

Ричард Докинз

Научная литература

Похожие книги

Путь Феникса
Путь Феникса

Почему фараоны Древнего Египта считали себя богами? Что скрывается за верованиями египтян в загробную жизнь на небесах и в подземное царство мертвых? И какое отношение все это имеет к проблеме Атлантиды? Автор книги — один из самых популярных исследователей древних цивилизаций в мире — предлагает свой ключ к прочтению вечной тайны египетских пирамид, Великого Сфинкса и загадочного образа священной птицы Феникс; по его убеждению, эта тайна чрезвычайно важна для понимания грядущих судеб человечества. Недаром публикацию его книги порой сравнивают с самим фактом расшифровки египетских иероглифов два века назад.Alan F. Alford.THE PHOENIX SOLUTION. SECRETS OF A LOST CIVILISATION© 1998 by Alan F. Alford

Алан Ф. Элфорд , Алан Элфорд , Вадим Геннадьевич Проскурин

Фантастика / Боевая фантастика / Технофэнтези / Прочая научная литература / Образование и наука / История / Научная литература