Принципиально новые виды военной техники, появившиеся во время войны: атомная бомба, радиолокаторы и ракеты потребовали комплексного системного подхода в научных разработках и организации производства во всех странах, где они создавались. В электронной аппаратуре крупномасштабная организаторская деятельность была тем более нужна в связи с переходом от разрозненных аппаратов или устройств к созданию больших систем, где они связывались воедино для совместной работы. В этом системном проектировании был неоценим опыт аналогичных электромеханических систем с оптическими средствами наблюдения, какими были ПУС и ПУАЗО.
Для создания радиоэлектронной аппаратуры с нужными военным тактико-техническими характеристиками и устойчивой к неблагоприятным окружающим условиям решения чисто конструктивных проблем было недостаточно. Требовались совершенно новые классы радиокомпонентов и не только активных, но и пассивных. Для развертывания массового производства средств радиолокации была необходима организация производства унифицированных высоконадежных сопротивлений, конденсаторов, штепсельных разъемов, переключателей, высокочастотных кабелей и др. и, конечно же, электровакуумных приборов.
За рубежом уже в середине тридцатых годов проходила специализация производств в различных областях электроники. Число фирм, производящих радиоприемники, сокращалось, а фирм, производящих радиокомпоненты, росло. Владельцы первых, как правило, не имели ни технической базы, ни экономических предпосылок оплачивать исследования и разработку деталей радиоаппаратуры, необходимых им в каждом конкретном случае. Они не могли конкурировать со специализированными фирмами, которые получили широкий рынок сбыта. Даже при высоком уровне электронной промышленности развертывание широкомасштабного производства радиотехнических средств СВЧ диапазона для военных целей потребовало огромных усилий. А ведь в Соединенных Штатах Америки в 1940 году одних только радиовещательных приемников выпустили более восьми миллионов штук (почти в 60 раз больше, чем в СССР), и среди них четверть автомобильных.
Своим появлением радиолокация обязана развитию средств борьбы в воздухе и на море. Первые системы радиообнаружения самолетов создавались с использованием метода биений. В этой аппаратуре передатчик и приемник разносились на значительное расстояние друг от друга. Передача велась незатухающими колебаниями, а приемник фиксировал флуктуирующие сигналы (биения), когда самолет пролетал сквозь завесу, созданную радиоволнами. Сегодня любой телезритель за городом, имеет "удовольствие" при близком пролете самолета наблюдать картину биений в виде полос на экране своего телевизора. Разработки по этому направлению в США начались еще в начале 1931 года. В нашей стране одним из первых проблемой радиообнаружения занялось Управление ПВО РККА для службы ВНОС (воздушное наблюдение, оповещение, связь). Начало этих работ приходится на 1933 год и связано с именем П. К. Ощепкова. В 1936 году наши специалисты ознакомились с описанием патента немецкой радиофирмы "Телефункен" на аналогичную аппаратуру. Необходимость разноса передатчика и приемника резко ограничивала возможности этого метода на суше и делала его неприменимым на море, и от подобных практически стационарных систем быстро отказались. НИИИС РККА все-таки довел это направление до аппаратуры "Ревень", которая под наименованием РУС-1 (радиоулавливатель самолетов — первый) в 1940 году была принята на вооружение для охраны воздушного пространства государственной границы.
Американские изобретатели радиолокатора Юнг и Тейлор тоже какое-то время занимались методом биений, но затем Юнг предложил Тейлору опробовать импульсный метод. Первоначальное предложение Юнга удовлетворяло пяти соображениям, сочетание которых собственно и отличает радиолокацию от других методов. Вот они:
- электромагнитное излучение на высоких частотах можно использовать для обнаружения и определения местоположения удаленных отражающих объектов;
- излучение должно вестись импульсами длительностью в несколько микросекунд с промежутками между импульсами во много раз большими длительности самих импульсов;
- отраженные объектами импульсы можно принять и воспроизвести с помощью приемной аппаратуры, находящейся в месте излучения;
- расстояние до отражающего объекта можно определить через измерение времени, которое затрачено на распространение импульса до "цели" и обратно, и, наконец;
- направление на объект может быть определено с помощью остронаправленных антенн.