Но он начал с доказательства нынешней теоремы покойного любителя математики из Мариуполя Геннадия Ивановича Крылова. Тот эмпирически нашел ее, но не успел доказать:
“Сумма двух возможных целых чисел, возведенных в одну и ту же степень, равна целому числу в степени на единицу большей”.
Хn + Yn = Z(n+1); (2)
Целое число >1 равно сумме двух целых чисел:
Z = A + B; при этом (3)
(2) можно представить как:
Z(n+1) = Zn. Z; (4)
Z(n+1)=(A + B). Zn = AZn+ ВZn ; (5)
Пусть аn = A; bn= В; в целых числах: (6)
Z(n+1)=(a. Z)n + (b. Z)n; (7)
Выражения в скобках — это и есть натуральные числа из (2) X и Y:
X = aZ; (8)
Y = bZ; (9)
Подставив (9) и (8) в (7) получим исходное выражение (3):
Xn+ Yn= Zn+1;что и требовалось доказать.
Ферма проверил теорему и на разность степеней:
Xn — Yn = Zn+1;?? (10)
Zn+1 = Zn. Z; (11)
Z = an — bn ; (12)
Zn+1 =(a Z)n — (bZ)n ; (13)
aZ = X; bZ = Y; (14)
Zn+1 = Xn — Yn ; (10)
Следовательно, теорема верна и для разности степеней и ее формулировка дополнена:
СУММА ИЛИ РАЗНОСТЬ ДВУХ ВОЗМОЖНЫХ ЦЕЛЫХ ЧИСЕЛ В СТЕПЕНИ n, РАВНА ЦЕЛОМУ ЧИСЛУ В СТЕПЕНИ n+1.
Ферма вывел более общую теорему НЕОБИНОМА:
“СУММА ДВУХ ВОЗМОЖНЫХ ЦЕЛЫХ ЧИСЕЛ В СТЕПЕНИ n, РАВНA ЦЕЛОМУ ЧИСЛУ В ЛЮБОЙ СТЕПЕНИ n+m, при n³2 и m>0.”
По аналогии с доказательством теоремы Крылова, он допустил, что вместо его НЕРАВЕСТВА (2) будет РАВЕНСТВО:
Xn+m + Yn+m = Zn+m = Zn. Zm; n³2 и m>0; (15)
Zm = A + B (16)
При уcловии, что A>0 и В>0, Zm>0 (17)
Слагаемые целые числа (16) могут равняться целым числам в степени n
A =an; B = bn; (18)
Zn+m = (a Z)n + (b Z)n (19)
Но, если X=aZ, Y=bZ, то (20)
Xn+m + Yn+m = Zn+m (15)
что и требовалось доказать.
Если теперь рассмотреть неравенство (1), как частный случай (1), когда m=0 и
Xn+0+ Yn+0 = Zn+0 (21)
Из (16) и (18) следует
an = 1 — bn; a = n√(1– bn) (22)
Поскольку bn > 1, то а оказывается МНИМОЙ ВЕЛИЧИНОЙ и РАВЕНСТВО (21) НЕПРАВОМЕРНО, является НЕРАВЕНСТВОМ (1), что и доказывает эту теорему.
Так, найдя “Необином”, Ферма привел доказательство своей теоремы, которое могло бы уместиться на полях ”Арифметики Диофанта”!