Читаем Мир астрономии. Рассказы о Вселенной, звездах и галактиках полностью

В 1980 году удалось установить, что R 136 состоит из трех компонентов, и самый яркий из них был назван R 136а. Можно предположить, что R 136а — самая массивная из известных на сегодняшний день видимых звезд. Температура ее «поверхности» заключена в пределах 45 тысяч — 80 тысяч K. (Напомним, что «температура» поверхности нашего Солнца всего 6000 K.) Но это еще не все. Этот объект непрерывно теряет массу в результате истечения из него газа. Это так называемый звездный ветер. Но для объекта R 136а это уже не ветер — это звездный ураган: вещество удаляется от объекта со скоростью 3500 км/сек.

В 1983 году удалось выяснить, что R 136а состоит по крайней мере из четырех звездообразных объектов. Доминирующий объект был назван R 136а1. И здесь возник следующий очень важный вопрос: является ли R 136а1 одиночной звездой или же это скопление очень ярких звезд? Дело в том, что по астрономическим масштабам диаметр этого компонента совсем невелик — всего 24 световых дня (ближайшая к Солнцу звезда находится на расстоянии около 4 световых лет). Если это коллектив звезд, то тогда в сравнительно небольшой объем нужно затолкать около двух десятков массивных ярких звезд. Таких примеров мы не знаем.

Вообще ведь очень ярких звезд не так много, а звезд такого типа, как объект R 136а1, и того меньше. Известная на сегодняшний день максимальная концентрация ярких звезд — 4 звезды в объеме с линейным размером около 10 световых лет. А в случае с R 136а1 размеры намного меньше, а звезд больше. Так что в этом варианте трудности достаточно велики. Но они становятся еще больше, если предположить, что R 136а1 — отдельная самостоятельная звезда.

Еще примерно 60 лет назад английский астроном А. Эддингтон установил, что звезда определенной светимости не может иметь массу меньше некоторого определенного предела и оставаться при этом в равновесии. С другой стороны, сравнительно недавно Ф. Кан из Манчестерского университета показал, что существует верхний предел массы звезд, образующихся из газопылевых облаков. В работе Кана этот предел составил 40 солнечных масс. Но если R 136а1 — одиночная звезда, то ее масса должна быть заключена в интервале между 400 и 1000 солнечных масс.

Как и многие другие оценки, используемые в астрофизике, оценки Кана сильно зависят от заложенных в исходные данные параметров. При небольшом изменении параметров можно в принципе «получить» протозвезду с массой около 100 масс Солнца. Но эти расчеты, как и многие другие, не учитывают всех возможных факторов.

Для объяснения феномена туманности Тарантул привлекаются волнующие воображение процессы, как слипание звезд, находящихся в малом объеме пространства, и, конечно же, наличие черной дыры в этой туманности. Теоретики буквально спасают современную астрономию. Действительно, что было бы без черных дыр гравитонов, гравитино, массивных нейтрино, магнитных монополей? Число необъяснимых явлений в нашем мире было бы просто-напросто устрашающим, а так, всегда имея «в запасе» черную дыру или еще какой-либо экзотический объект, можно без труда объяснить самые сложные вещи.

Исследование галактик вносит вклад не только в космологию, но и в вопросы звездной эволюции. Объекты, подобные туманности Тарантул, нельзя считать уникальными. Так в галактике М 101 есть несколько туманностей, каждая из которых светит в пять раз сильнее, чем туманность Тарантул, причем светимость одной из них в 11 раз превышает светимость Тарантула.

Проявление активности в других галактиках принимает не менее впечатляющие формы, чем в Большом Магеллановом Облаке. В последнее время наблюдения с помощью радиотелескопов обнаружили новое удивительное явление, получившее название «космических выбросов». «Выброс» представляет собой довольно узкий поток плазмы из центра Галактики. Обнаруживается выброс по испускаемому им радиоизлучению, протяженность его достигает иногда миллионов световых лет.

Вообще говоря, выбросы были известны астрономам достаточно давно — в начале нынешнего столетия. Естественно, наблюдения можно было тогда проводить только в оптическом диапазоне электромагнитных волн. Но лишь с введением в строй радиоастрономических обсерваторий и радиоинтерферометров было принципиально улучшено разрешение, что дало возможность изучать детали и структуру как самих выбросов, так и их источников. Действительно, разрешение, которое сейчас можно получить в радиодиапазоне, достигает тысячной доли секунды. Это соответствует поперечнику двадцатикопеечной монеты, рассматриваемой с расстояния около 4 тысяч километров. Ученые сегодня знают много примеров космических струй, но реальные механизмы, приводящие к образованию выбросов, неизвестны.

В южной части неба нашего северного полушария радиоастрономы давно изучают оптическую галактику NGC 5128, с которой связан Центавр  — один из сильнейших радиоисточников на небе. Размеры этого радиоисточника огромны — около 3 миллионов световых лет. Если бы мы могли увидеть этот источник на небе, он выглядел бы как объект в 20 раз больше Луны.

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже