Нам сейчас нужно обязательно запомнить чрезвычайно важное обстоятельство, заключающееся в том, что специфические свойства пространства-времени, которые естественно могут быть объяснены при введении такого понятия, как кривизна, проявляются лишь в сильных гравитационных полях. В локальных областях справедливо классическое приближение Ньютона. Кстати говоря, закон всемирного тяготения Ньютона легко выводится из ОТО (как сейчас называют физики общую теорию относительности). «Самая красивая из всех существующих физических теорий», — писали об ОТО советские физики, академики Л. Ландау и Е. Лифшиц.
Поскольку речь у нас сейчас пойдет о космологических проблемах, об истории Вселенной, следует попытаться понять хотя бы основные выводы и следствия из ОТО. Это нелегкая задача, поскольку ОТО имеет дело с четырехмерным пространством, где одной из координат является время.
Трудность состоит в том, что четырехмерный мир нельзя представить себе наглядно. Для нас число «наглядных» измерений не превышает трех. Двухмерна плоскость, трехмерен шар, куб, но как представить себе четырехмерие? Математики имеют дело с пространствами и больших размерностей, но для нас, как, впрочем, и для них, это абстракции.
Четырехмерный мир Эйнштейна, конечно же, не абстракция. Дело в том, что мы живем геометрически в трехмерном пространстве, но все физические процессы в этом мире связаны со временем, а сам ход времени для наблюдателя зависит от свойств пространства, от скорости процессов. Поэтому время связано в мире Эйнштейна с геометрией, а геометрия со временем. Недаром Уилер предложил называть теорию Эйнштейна геометродинамикой.
Геометродинамика, ОТО предсказывает удивительные явления, которые должны происходить в нашем мире: изменение темпа течения времени, искривление лучей света в сильных полях тяготения и многое другое. Но нас сейчас будут интересовать несколько иные вещи.
Обратимся к основному отличию ОТО от классической физики Ньютона при рассмотрении Вселенной, мира. Об этом отличии лучше всего сказал сам Эйнштейн: «Потребовалась жестокая борьба (для Ньютона), чтобы прийти к понятию независимого и абсолютного пространства, неоценимому для развития теории… Выводы Ньютона при современном ему состоянии науки были единственно возможными и, в частности, единственно плодотворными.
…Не менее напряженные усилия потребовались для того, чтобы впоследствии преодолеть это понятие (абсолютного пространства)».
Итак, пространство не абсолютно, оно динамично, оно живет. И самым важным свойством уравнений Эйнштейна, по крайней мере для космологии, является то, что они позволяют представить себе, как жила, живет и будет жить в дальнейшем наша Вселенная.
Начиная рассказ об этом, нельзя не подчеркнуть, что Эйнштейн на первых порах намеренно искал такое решение своих уравнений, которое «давало» бы однородную и статичную Вселенную. То есть сначала и Эйнштейн, так же как и Ньютон, оказался в плену идеи, если так можно выразиться, «статичной вечности».
Первым человеком, которому удалось на основании уравнений Эйнштейна получить принципиально новые выводы о структуре нашей Вселенной, был советский математик А. Фридман. Ему было всего 37 лет, когда он умер от брюшного тифа в Ленинграде в 1925 году.
Фридман был разносторонним человеком. Он выполнил интересные работы в области метеорологии и гидромеханики. Но имя свое ученый обессмертил работами по космологии. Первая статья 1922 года, где он нашел новое космологическое решение уравнений ОТО, говорила о том, что наш мир, наша Вселенная нестационарна. Она замкнута и непрерывно расширяется. Эйнштейн отреагировал на эту статью отрицательно, немедленно опубликовав «Замечание», в котором содержалось опровержение выводов Фридмана. Но великий Эйнштейн оказался неправ. Он признал это в 1923 году: «Я считаю результаты г. Фридмана правильными и проливающими новый свет…»
Сегодня в научной литературе прочно утвердился термин «Вселенные Фридмана». Что же это такое?
Фридман нашел два решения уравнений Эйнштейна, каждое из которых зависит от средней плотности материи во Вселенной. Если средняя плотность меньше некоторой величины
Попробуем пояснить, как совмещаются понятия конечности и безграничности. Наглядный пример здесь достаточно прост. Возьмем поверхность резинового надувного шарика. Она конечна, как бы мы этот шар ни раздували. Но в то же время она и безгранична, так как, путешествуя по этой поверхности, мы никогда не доберемся до границы. В крайнем случае вернемся туда, откуда начали свой путь. Эту аналогию полезно запомнить, она еще не раз нам пригодится.