Читаем Мир электричества полностью

Примерно в начале 30-х годов XIX столетия англичане Кемп и Уильям Стёрджен (изобретатель электромагнита, о котором речь еще впереди) выяснили, что цинковая пластинка, покрытая амальгамой – раствором цинка в ртути, – действует не хуже чистого цинка, но при этом не растворяется в кислоте, когда элемент не работает, то есть когда он не дает тока. Это стало существенным достижением. Следом за ними французский физик, основатель ученой династии Антуан Сезар Беккерель высказал мысль, что хорошо бы попробовать опускать пластинки в разные сосуды так, чтобы выделяющийся водород тут же химически соединялся с кислородом, образуя воду. Идея понравилась. Но как ее реализовать? Изобретатели всех стран принялись за опыты. И надо прямо сказать, что если в XVIII веке едва ли не каждый образованный человек строил электрические машины, чтобы добывать таинственную силу электричества трением, то теперь всякий исследователь считал своим долгом подарить миру и человечеству новый химический элемент.

На первом этапе наибольший успех выпал на долю профессора химии Лондонского королевского колледжа Даниэля. В стеклянную банку с медным купоросом он поместил согнутый в цилиндр металлический лист. Внутрь вставил глиняный сосуд с пористыми стенками, заполненный разбавленной серной кислотой. В кислоту был помещен цинк. Водород проходил через поры глиняного сосуда, вытеснял медь из купороса. Несколько синих кристалликов, брошенных на дно банки, пополняли убыль меди.

Поляризация была побеждена! Однако у элемента Даниэля нашлись другие недостатки. Так, он имел пониженную электродвижущую силу. Часть электрической энергии тратилась внутри самого элемента на разложение медного купороса.



Гальванические элементы Лекланше и Даниэля


Соотечественник Даниэля Уильям Грове решил заменить медный купорос азотной кислотой. А чтобы она не разъедала медный электрод, заменил медь платиной. Все получилось в соответствии с ожиданиями: электродвижущая сила возросла. К сожалению, возросла и стоимость такого источника тока: платина – металл дорогой. Правда, Грове и его последователи делали электроды из тончайших листков, согнутых для прочности буквой S. Несмотря на высокую стоимость, элементы Грове нашли довольно широкое распространение в лабораториях многих стран.

Сегодня может показаться странным, что никто не додумался заменить платину углем. Принципиальная возможность такой замены была уже известна. Но тут мы не учитываем уровня технологии начала XIX столетия. Тогда никто не умел делать плотных углей. А обычный древесный уголь слишком пористый. Прошло несколько лет, прежде чем немецкий химик Роберт Бунзен описал способ изготовления угольных стержней из прессованного молотого графита, который выделялся при сгорании светильного газа на раскаленных стенках реторт. Стержни стали прекрасным заменителем платины.

Элемент Бунзена приняли «на ура» не только лаборатории физики, но и первые электротехнические предприятия (в частности, по гальванопластике). И это несмотря на то, что при работе элемент Бунзена выделял немало удушливых паров азотной кислоты. Иоганн Поггендорф заменил азотную кислоту хромовой, не выделявшей вредных испарений. Но ее производство было довольно дорогим делом.



Гальванические элементы Грове, Калло и Бунзена


Изобретатели старались вовсю. На страницах научных журналов одно за другим появлялись описания все новых и новых элементов. Ими занимались специалисты, ими занимались любители, ими занимались… В качестве курьеза можно упомянуть, что последний французский император Наполеон III, прежде чем навсегда подарить свою корону Республике, тоже «осчастливил» мир конструкциями двух источников электрического тока.

Впрочем, во второй половине XIX столетия химические источники тока стали изготавливать в специальных мастерских. Главный их потребитель – телеграф – требовал простоты устройства, дешевизны, устойчивости и надежности в работе. За все это телеграфисты соглашались на самые «слабые» токи.

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже