Читаем Мир математики. т.3. Простые числа. Долгая дорога к бесконечности полностью

ЭЙЛЕР И МИР ЗВУКОВ

Эйлер догадался использовать мнимую переменную в так называемой экспоненциальной функции f (х) = 2х. Он был поражен, обнаружив, что график этой функции содержит волнообразные линии, которые встречаются при попытках изобразить музыкальные ноты. В зависимости от значений, принимаемых этими мнимыми числами, волны соответствовали более высоким или более низким нотам.

Несколько лет спустя французский математик Жан Батист Жозеф Фурье (1768–1830) разработал метод анализа периодических функций, основанный на результате Эйлера, который связал аналитические методы и мир звуков.

* * *

Эйлер попытался связать простые числа с функциями. Он знал, что по основной теореме арифметики любое натуральное число может быть единственным способом выражено в виде произведения простых чисел. Это означало, что знаменатель каждой из дробей в разложении дзета-функции может быть записан в виде произведения простых чисел. Например, запишем дзета-функцию для х = 2:



и возьмем дробь 1/360. Разложим ее знаменатель, 360, на простые множители:

360 = 23 х З2 х 5, так что



Возведем обе части в квадрат:



Проделав это с каждым из знаменателей дзета-функции, Эйлер получил выражение



которое содержит только простые числа. В левой части этого выражения стоит бесконечная сумма, а в правой — произведение, также состоящее из бесконечного множества чисел. Это выражение, названное «эйлеровым произведением», является краеугольным камнем, на котором в последующие века строилось здание аналитической теории чисел. Оно стало отправной точкой, с которой Риман начал наводить порядок в хаотическом царстве простых чисел, о чем подробнее мы расскажем в шестой главе.


Гипотеза Гольдбаха


Прусский математик Кристиан Гольдбах (1690–1764) часто переписывался с Эйлером. 18 ноября 1752 г. Гольдбах послал ему письмо, содержащее следующее утверждение: «Любое четное число, большее 2, можно представить в виде суммы двух простых чисел». Выражение «сумма двух простых чисел» включало в себя и случаи, когда простое число повторяется. Например,

4 = 2 + 2

6 = 3 + 3

8 = 3 + 5

10 = 3 + 7

12 = 5 + 7

14 = 3 +11.

16 декабря того же года Эйлер прислал ответ, где сообщал, что проверил гипотезу до числа 1000, а в другом письме от 3 апреля 1753 г. он написал, что проверил результат до числа 2500. В настоящее время с помощью компьютеров гипотеза проверена для всех четных чисел до двух триллионов. Однако в общем виде гипотеза еще не доказана. По мнению специалистов, она является одной из самых сложных проблем за всю историю математики.



Чен Цзинжунь (1933–1996), один из самых выдающихся математиков XX в., получил в 1966 г. лучший результат в деле доказательства гипотезы Гольдбаха. Он доказал, что любое достаточно большое четное число можно представить в виде суммы простого числа и полупростого (произведения двух простых чисел). Этот факт засвидетельствован на почтовой марке Китайской Народной Республики, выпущенной в 1999 г. в честь Чена.

* * *

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже