Читаем Мир математики. т.3. Простые числа. Долгая дорога к бесконечности полностью

Однажды выдающегося немецкого математика Давида Гильберта спросили, какой вопрос он задал бы на математическом симпозиуме, который состоится через сто лет после его смерти. Он ответил: «Я бы спросил, доказана ли гипотеза Римана». До сих пор никто не нашел доказательства. Но ста лет еще не прошло, ведь Гильберт умер лишь в 1943 г.


Математическая мысль


Гениальный французский математик Анри Пуанкаре (1854–1912) говорил, что математические исследования проходят в три этапа. Первая стадия состоит в скрупулезном анализе трудностей данной проблемы, разных подходов, необходимых для ее решения, имеющихся методов, а также в готовности к тому, что потребуется радикальное переосмысление наших знаний.

Следующей стадией является кажущаяся отчужденность. Математик перестает думать о проблеме или по крайней мере перестает думать о ней сознательно, чтобы ум погрузился в таинственную область подсознательного, где творческая деятельность подчиняется собственным правилам. Это область неточности, нестрогости и интеллектуальных блужданий. В результате такого подсознательного процесса рождается вдохновение, которое может быть вызвано событиями, не имеющими явной связи с темой исследований. Этот момент был описан ирландским математиком Уильямом Гамильтоном (1805–1865). Однажды он гулял с женой на окраине Дублина и вдруг остановился будто от удара электрическим током: «Казалось, я вдруг почувствовал, как замыкаются гальванические цепи мыслей, и вспыхнувшей искрой были основные уравнения, связывающие i, j, k…».

Гамильтон вдруг осознал, что не три, а четыре числа необходимы для описания пространственного поведения гиперкомплексных чисел. Это действительно волшебный момент, когда исследователь вдруг чувствует, как вспыхивает свет в комнате, в которой он никогда раньше не бывал.

Далее Пуанкаре говорит о процессе отбора, который идет на подсознательном уровне, в результате чего мы осознаем одни идеи и отвергаем другие. В конце концов, когда мы не в состоянии решить, являются ли эти идеи истинными или ложными, единственным критерием отбора является математическая красота.

* * *

ПАРАДОКСЫ БЕСКОНЕЧНОСТИ: ОТЕЛЬ ГИЛЬБЕРТА

Отель Гильберта — воображаемое здание, в котором имеется бесконечное количество комнат. Управляющий отелем гордится тем, что никогда не отказал ни одному гостю. А теперь представьте себе: поздним вечером, когда все номера отеля заняты, внезапно появляется новый гость. Портье идет к управляющему и сообщает ему, что гостя некуда поселить. Управляющий говорит, что надо попросить всех жильцов переселиться в номер по соседству, так что гость из первого номера переселяется во второй, гость из второго — в третий и так далее. После этого первая комната освободится, и туда можно будет поселить нового гостя. Однако в полночь портье снова прибегает к управляющему. На этот раз он просто в отчаянии. Только что для участия в симпозиуме прибыло бесконечное количество математиков. «Мы же не сможем поселить их всех!» — восклицает портье. Подумав немного, управляющий предлагает следующее: «Нам придется попросить наших гостей о еще одном одолжении. Пусть каждый умножит номер своей комнаты на два и переселится в комнату с полученным номером». Таким образом, гость из четвертого номера переселяется в комнату 8, гость из комнаты 23 — в комнату 46, гость из комнаты 352 — в комнату 704 и так далее. После этого все комнаты с нечетными номерами освободятся. В них и поселятся участники симпозиума.



Портрет Давида Гчльберта, 1912 г.

* * *

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже