Таким образом, по формуле расстояния такси
Круги встречаются повсеместно, как в естественных, так и в искусственных мирах, и, следовательно, это, пожалуй, простейшая из геометрических фигур, и ее легче всего описать. Подумав о круге, мы сразу вспоминаем множество круглых объектов, так что нам совсем нетрудно представить себе эту форму. Например, если взять колесо велосипеда, очевидно, что все спицы имеют одинаковую длину, иначе было бы невозможно на нем ездить. Все спицы одинаковой длины, потому что все точки на ободе находятся на одном и том же расстоянии от центра. Теперь сформулируем точное определение окружности на плоскости.
Геометрическое место точек плоскости, равноудаленных от заданной точки на заданное расстояние, называется окружностью.
Данная фиксированная точка называется центром окружности, а заданное расстояние — радиусом окружности.
Таким образом, если мы выберем точку
На приведенном выше рисунке для изображения точек окружности использовалась формула евклидова расстояния, но если применять формулу расстояния такси, то получится совсем другой, очень странный результат, как можно видеть на следующем рисунке.
Мы можем проверить, что точки
Если вычислить длину окружности нашего такси-круга по классической формуле
Многие другие формы, известные из геометрии Евклида, выглядят странно в геометрии такси. Например, эллипс представляет собой множество точек, расположенных вокруг двух фиксированных точек, называемых фокусами. Сумма расстояний от любой точки эллипса до фокусов постоянна. Круг является частным случаем эллипса, когда оба фокуса находятся в одной точке.
В следующем примере фокусами являются точки
Если евклидово расстояние заменить расстоянием такси, то множество точек
Эти примеры показывают, что формы геометрических фигур не являются универсальными, вечными и неизменными. Любая форма относительна, каким бы странным этот факт ни казался. Формы зависят от метрики — так называется тип используемого «расстояния». Другими словами, они зависят от подхода к данной задаче.
Тем не менее, расстояние такси вовсе не является курьезом. Оно имеет множество применений в городском планировании. Например, оно играет важную роль при планировании эффективной дорожной сети и удобного расположения государственных учреждений (больниц, школ, туристических достопримечательностей и т. д.).
Давайте представим, что в некотором городе приняли решение соединить между собой два городских округа. Эти районы называются
В математических терминах этот вопрос можно сформулировать следующим образом: какие точки на плоскости равноудалены от точек
Как всегда, в евклидовой геометрии имеется простое решение. Если на плоскости
d(
Но этот подход не работает в геометрии такси. Обратите внимание, что евклидово решение потребует снести большое количество зданий, чтобы построить такой идеальный маршрут.
Решение должно быть найдено в терминах геометрии такси. Нужно найти линию, все точки