Читаем Мир математики. т 40. Математическая планета. Путешествие вокруг света полностью

Возможно, именно так рассуждал индийский автор Шульба-Сутр, однако приведенные алгебраические методы и пренебрежение малыми величинами кажутся не слишком уместными при поиске все более точных значений. Чтобы поставить себя на место индийского автора и понять ход его рассуждений, нужно найти геометрическое обоснование этого необычного знаменателя, то есть числа 34. Разделим квадратный пустой угол со стороной 1/12 на столько частей, сколько раз этот квадрат укладывается на верхней и правой сторонах фигуры, то есть на 16 + 16 = 32 части. Отсечем от каждого из 16 квадратиков, расположенных вдоль стороны фигуры, полосу шириной 1/(12·32) и получим новый многоугольник, вписанный в квадрат. Длина стороны этого многоугольника будет равна:


Площадь этого квадрата намного ближе к искомому значению:


Число 34 по-прежнему не появляется. Поступим иначе: вместо того чтобы уменьшить стороны изображенного выше неправильного многоугольника, рассечем квадрат со стороной 1 + 1/3 + 1/12 вдоль верхней и правой стороны. На каждой из них маленький квадратик в углу укладывается ровно 17 раз.



Разрежем этот маленький квадратик на 34 полосы, а затем отсечем 17 полос из верхней и столько же — из правой стороны большого квадрата. Мы исключили излишек в форме маленького квадрата, длина стороны которого равна: 1/(12·34)

Полученная фигура вновь будет неправильным многоугольником, вписанным в квадрат. Длина стороны этой фигуры в точности равна приближенному значению, приведенному в Шульба-Сутрах.



По всей видимости, если мы отбросим 34 квадратика, это будет слишком много, если отбросим 33 — слишком мало, чем и объясняется чередование чисел 33 и 34 в последующих приближенных значениях, полученных по индийскому методу:


В продолжение рассуждений, параллельных индийскому методу, заметим: если разделить исходный квадрат не на три, а на пять частей, то первое приближение будет более точным.

Подобная схема рассуждений не вписывается в евклидову геометрию. Несмотря на всю ее логичность, эти рассуждения не основаны на аксиомах и не приводят к доказательству уже известного результата. Мы видим перед собой не теорему, доказательство и вывод, а поиск некоторого объекта, природу которого мы узнаем лишь по мере приближения к нему.


Математика как культурный феномен


Математическая мысль усложняется в культурах, которым известна письменность, и напрямую связывается с ней. Мы гораздо больше знаем о тех культурах, от которых до нас дошли письменные свидетельства.

В египетских пирамидах мы видим квадрат, а не круг. В Стоунхендже мы видим круг, а не квадрат. Быть может, форму квадрата должны были иметь монументы, имевшие отношение к загробному миру, подобно пирамидам? Быть может, круг имеет большее отношение к астрономии и ритуалам-, связанным с Солнцем и Луной?

Культуры, о которых мы рассказали в этой главе, давно прекратили свое существование. Математические идеи в них зародились намного раньше, чем возникла так называемая западная культура. Развитие этих идей носило локальный характер: все народы занимались математикой по-своему и независимо друг от друга решали практические задачи. Эта математика была этноматематикой.

Мы имеем некоторое представление о том, что такое математика, как она создается, и наше представление опирается на идею непрерывности пространства и времени. Но, по всей видимости, эта идея возникла лишь с появлением нашей культуры. А что происходит и происходило за ее пределами? В доколумбовой Америке существовали народы, создавшие важные математические знания. Этот процесс не прекращается в самых разных культурах с момента открытия нового континента и до наших дней — именно благодаря ему эти культуры смогли выжить и дойти до нас. Обо всем этом мы и поговорим дальше.

* * *

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже