Читаем Мир математики. т 40. Математическая планета. Путешествие вокруг света полностью

С. повстречался с неизвестным Икс. Тот сказал С.:

— Я тебя не знаю. Но я о тебе слышал. Ты — тот, кто всех обманывает.

— Да, это я. Но я оставил снадобья дома и не могу обмануть тебя.

— И что с того? Если ты обманщик, то можешь обмануть меня и без твоих снадобий.

— Нет, без них не могу. Были бы они у меня с собой, я бы обманул тебя. Если хочешь, одолжи мне коня, я отправлюсь на поиски, найду снадобья, вернусь и обману тебя.

— Я одолжу тебе коня. Но ты должен вернуться со снадобьями.

С. вскочил на коня и поскакал вдаль. Отъехав подальше, он незаметно ударил коня, чтобы тот остановился.

С. вернулся к Иксу и сказал:

— Твой конь не хочет скакать. Быть может, он меня боится? Одолжи-ка мне свою шляпу.

Икс одолжил ему шляпу, но конь вновь остановился. Тогда С. сказал Иксу:

— Этот конь меня боится. Дай-ка мне твою куртку.

Затем С. таким же манером выпросил у индейца попону и кнут. Отъехав подальше, С. обернулся и сказал Иксу:

— Я забрал все твои вещи. Я уже обманул тебя, и мне не нужно никакого снадобья.


Этот рассказ вполне можно считать лекцией по логике. Проанализируем некоторые выражения с точки зрения формальной логики. Начнем с того, что дадим определение обманщику. Если лжец — это тот, кто никогда не говорит правду, то обманщик иногда говорит правду, а иногда — нет. С. говорит правду, когда признается, что обманывает всех, но лжет, когда говорит, что ему нужно снадобье и что он оставил его дома.

Противоречит ли это тому, что С. говорит дальше, то есть что без снадобий он не может обманывать? Это логическая импликация:

р: нет снадобья => q: не могу обманывать.

Составив таблицу истинности для этой импликации, мы увидим, что ее результатом всегда будет «истина», за исключением одного случая — когда предпосылка верна (1), а следствие ложно (0).



Икс, собеседник С., по-видимому, знает об этом, когда говорит, что для обмана не нужно никакого снадобья, то есть импликация, выраженная С., ложна. В этом и состоит суть рассказа и его логики. С., тем не менее, настаивает, что без снадобий он не может обманывать. Доверчивость Икса становится причиной дальнейших событий.


Родственные отношения


Симметрия проявляется не только в том, что можно увидеть. Она неявно присутствует и в жизни общества, особенно в отношениях родства или свойства. Равенство людей, связанных родственными отношениями, нельзя понять без симметрии. Отсутствие симметрии в отношениях между родителями и детьми определяет их социальное неравенство. Если А — отец или мать В, то В не может быть отцом или матерью А. Для братьев и сестер подобное отношение не выполняется: если X — брат или сестра Y, то — брат или сестра X. Братья и сестры принадлежат к одному и тому же поколению, а следовательно, их предки и остальные члены общества, по крайней мере предположительно, должны обращаться с ними одинаково: в равной мере предоставлять им приют, питание и поддержку, обучать, наделять их правами и обязанностями.

В академической математике отношения изучаются потому, что на их основе определяются социальные классы. Члены класса характеризуются наличием общих черт. Рассмотрим в качестве примера отношение, определяемое выражением «старше, чем». Допустим, что субъект А связан с субъектом В, и запишем А ~ В, что означает «А старше В». Какими свойствами обладает это отношение? Начнем с того, что ответим на вопрос: связан ли субъект А сам с собой? Иными словами, выполняется ли отношение

А ~ A?

Нет, так как человек не может быть старше самого себя. Это отношение не обладает рефлексивностью. Если субъект А связан с субъектом В, то связан ли В с А?

Иными словами, если А ~ В, то В ~ А?

Это также неверно, так как если «А старше В», то не может быть, что «В старше А». Следовательно, это отношение не является симметричным. Если субъект А связан отношением с В, а тот — с субъектом С, что можно сказать об отношении между первым и третьим субъектами? Верно ли, что если А ~ В и В ~ С, то А ~ С?

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже