Читаем Мир многих миров. Физики в поисках иных вселенных. полностью

Если вы попробуете измерить, скажем, магнитное поле внутри ящика, полученный результат будет зависеть от размера вашего измерительного устройства. Предположим, для начала вы взяли относительно крупное приспособление, измеряющее поле в масштабе  1сантиметр. Тогда величина измеренного поля составит несколько миллиардных долей гаусса. (Для сравнения: напряженность магнитного поля Земли составляет у поверхности около 1гаусса.) Спустя одну наносекунду [80]направление поля станет совершенно другим, но его величина останется где-то между нулем и несколькими миллиардными гаусса. Чтобы заметить эти стремительные флуктуации поля, измерения надо выполнять быстро. Если измерение занимает больше наносекунды, вы получите среднее значение поля, которое будет очень близко к нулю.

Детектор размером  1миллиметр зарегистрирует в  10раз более сильное поле, которое флуктуирует в  10раз быстрее. Эти соотношения сохраняются по мере дальнейшего уменьшения масштабов: каждый раз, когда вы уменьшаете масштаб длины в  10раз, величина флуктуации увеличивается в  100раз, а их частота возрастает десятикратно. В масштабе атомов флуктуирующее магнитное поле в  10миллионов гаусс меняет свое направление примерно 10 17раз в секунду.

Мы не замечаем этих колоссальных магнитных полей, потому что они очень быстро меняются от точки к точке и от мгновения к мгновению. Стрелка компаса, например, реагирует на магнитное поле, осредненное по всей ее длине, и за интервал времени, достаточный для существенного ее поворота (скажем,  0,1секунды). Влияние квантовых флуктуации на таких масштабах совершенно ничтожно. [81]

Все это замечательно, пока мы не заинтересуемся энергией флуктуации. Плотность энергии магнитного поля зависит только от его напряженности, но не от направления. Поэтому, даже если поле колеблется в разные стороны, его плотность энергии в среднем не равна нулю. Сильные, быстро флуктуирующие поля на малых расстояниях вносят большой вклад в плотность энергии, и тут мы сталкиваемся с серьезной проблемой. По мере рассмотрения все меньших и меньших размеров плотность энергии неограниченно возрастает. В результате мы приходим к абсурдному выводу, будто плотность энергии вакуума бесконечна! Похоже, в нашей теории что-то глубоко неверно. Попробуем разобраться, что бы это могло быть и как нам обойти этот странный результат.

Бесконечность возникает, если мы допускаем, что линейный масштаб флуктуации может быть сколь угодно малым. Но ведь не исключено, что существует предел тому, насколько малыми они могут быть. На сверхмалых расстояниях геометрия пространства и времени тоже оказывается подвержена большим квантовым флуктуациям. Как и в случае электромагнетизма, чем меньше линейный масштаб, тем больше флуктуации. Ниже некоторого критического размера, называемого планковской длиной, пространство время обретает хаотическую, пенообразную структуру. Пространство неистово закручивается и сминается, крошечные "пузырьки" отрываются от него и немедленно коллапсируют, возникает и мгновенно исчезает множество "ручек" или "туннелей" (рис. 12.1). Планковская длина невероятно мала: она составляет одну миллиардно-триллионно-триллионную долю сантиметра. В значительно больших масштабах пространство выглядит гладким, а "пространственно-временная пена" не видна — подобно тому как пенная поверхность океана кажется гладкой, если смотреть на нее с большой высоты.

 

Рис. 12.1.Пространственно-временная пена.

Возможно, столь резкое изменение свойств пространства-времени гасит идущие вразнос электромагнитные флуктуации. Этого нельзя сказать с уверенностью, поскольку физика пространственно-временной пены не вполне ясна. Но даже при наилучшем раскладе ничто не ограничивает флуктуации в масштабах, больших, чем планковская длина. Оценка плотности энергии таких флуктуации дает поразительную величину 10 88тонн на кубический сантиметр, что намного превосходит энергию вакуума Великого объединения!

Плотность энергии истинного вакуума — это то, что Эйнштейн называл космологической постоянной. Если она действительно так невероятно велика, Вселенная должна сейчас находиться в состоянии взрывного инфляционного расширения. Однако наблюдаемый темп расширения Вселенной ограничивает величину космологической постоянной значением в 10 120(это больше гугола!) раз меньшим. Итак, мы столкнулись с загадкой: почему плотность энергии вакуума не так велика? Столь разительное несоответствие между предсказанным и наблюдаемым значениями космологической постоянной известно под названием проблемы космологической постоянной. Это одна из самых волнующих и будоражащих ум загадок в теоретической физике элементарных частиц.

<p>В поисках глубинной симметрии</p>
Перейти на страницу:

Похожие книги

Бозон Хиггса
Бозон Хиггса

Джим Бэгготт, ученый, писатель, популяризатор науки, в своей книге подробно рассматривает процесс предсказания и открытия новой частицы – бозона Хиггса, попутно освещая такие вопросы фундаментальной физики, как строение материи, происхождение массы и энергии. Автор объясняет, что важность открытия частицы заключается еще и в том, что оно доказывает существование поля Хиггса, благодаря которому безмассовые частицы приобретают массу, что является необходимым условием для возникновения материи. Из книги вы узнаете о развитии физических теорий, начиная с античного понятия об атоме, и техническом прогрессе, позволившем их осуществить, а также историю обнаружения элементарных частиц.

Джим Бэгготт

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Физика / Прочая научная литература / Прочая справочная литература / Образование и наука / Словари и Энциклопедии