Читаем Мир по Эйнштейну. От теории относительности до теории струн полностью

Первое существенное продвижение было сделано Максом Борном летом 1926 г. Как он сам описывал{145}: «Моим отправным пунктом стало соображение Эйнштейна, касающееся взаимосвязи между полем волны и квантом света. Он [Эйнштейн] сказал приблизительно следующее: волны служат лишь для того, чтобы управлять световыми корпускулами, и в этом смысле он говорил про “духовые поля”, определяющие вероятность выбора того или иного пути… квантом света…» Эти соображения Эйнштейна про некоторое «духовое поле», или «управляющее поле», приватно обсуждались им в 1920-х гг. со многими учеными (Макс Борн, Юджин Вигнер и др.), однако они никогда не публиковались. Как бы то ни было, вполне возможно, именно эти соображения мотивировали Борна на интерпретацию волновой амплитуды A (t, q) физической системы как «амплитуды вероятности» того, что система будет находиться в момент времени t в определенной конфигурации, описываемой переменными q. [Как говорилось выше, когда рассматривается одна частица, q обозначает три пространственные координаты, тогда как в системе из двух частиц q обозначает шесть координат, необходимых для задания положения обеих частиц, и т. д.] Борн далее уточняет (в сноске, добавленной при перечитывании корректуры), что вероятность найти систему в конфигурации q пропорциональна квадрату{146} амплитуды A (q). И затем подытоживает суть предложенной им интерпретации квантовой теории: «Движение частиц подчиняется закону вероятности, тогда как сама вероятность эволюционирует в соответствии с законом причинности».

Вторая часть этой цитаты намекает на тот факт, что «волновое уравнение Шредингера», написанное им в начале 1926 г., является детерминистским уравнением распространения, т. е. уравнением, позволяющим однозначным образом определить временную эволюцию амплитуды А, если известно ее значение в произвольный начальный момент.

«Вероятностная интерпретация» Борна стала серьезным концептуальным прорывом, хотя она принесла больше проблем, нежели решений. Фактически эта интерпретация была лишь гипотезой и требовала подтверждения исходя из математического формализма квантовой теории. Именно так думал Гейзенберг в конце 1926-го и в начале 1927 г. В то время Вернер Гейзенберг работал в группе Нильса Бора в Копенгагене. Он активно обсуждал с Бором возможную физическую интерпретацию математического формализма, так что их беседы иногда затягивались до поздней ночи. В феврале 1927 г., когда Гейзенберг остался один в Копенгагене, поскольку Бор катался на лыжах в Норвегии, ему в голову пришла новая идея о том, как совместить волновое и корпускулярное описания одной и той же квантовой частицы (скажем, электрона). Как он сам рассказывал{147}, воспоминания о его беседе с Эйнштейном годом ранее сыграли решающую роль в его рассуждении:

«Это было около полуночи, когда я неожиданно вспомнил мои беседы с Эйнштейном и, в частности, его фразу: “Только теория решает, что является наблюдаемым, а что нет”. Я вдруг сообразил, что здесь-то и нужно искать ключ к загадке, которая так занимала нас [его и Бора]. Тогда я решил совершить ночную прогулку по парку, чтобы подумать над значением этой фразы Эйнштейна».

Именно во время этой ночной прогулки, когда он размышлял о значении фразы Эйнштейна, Гейзенберг открыл свои знаменитые «соотношения неопределенностей»{148}, которые гласят, что произведение «неопределенности» положения частицы и «неопределенности» ее количества движения (или импульса){149} обязано быть больше постоянной Планка h{150}.

Гейзенберг понял, что соотношения неопределенностей позволяют прояснить условия, при которых квантовую частицу можно одновременно описывать и как волну, и как частицу. Например, ранее казалось, что наблюдение в детекторах прямых треков частиц, видимых на макроскопическом уровне, обязывает описывать частицу исключительно как локализованную корпускулу. Однако соотношения неопределенностей показывали, что ненулевая ширина трека хорошо согласуется с проявлением волнового поведения частицы на масштабах расстояний, сравнимых с этой шириной.

Когда Бор вернулся из отпуска в Норвегии, Гейзенберг принялся с энтузиазмом объяснять ему свои новые идеи, возникшие на основе философского утверждения Эйнштейна («Только теория решает, что является наблюдаемым, а что нет»).

Перейти на страницу:

Похожие книги

Гиперпространство
Гиперпространство

Инстинкт говорит нам, что наш мир трехмерный. Исходя из этого представления, веками строились и научные гипотезы. По мнению выдающегося физика Мичио Каку, это такой же предрассудок, каким было убеждение древних египтян в том, что Земля плоская. Книга посвящена теории гиперпространства. Идея многомерности пространства вызывала скепсис, высмеивалась, но теперь признается многими авторитетными учеными. Значение этой теории заключается в том, что она способна объединять все известные физические феномены в простую конструкцию и привести ученых к так называемой теории всего. Однако серьезной и доступной литературы для неспециалистов почти нет. Этот пробел и восполняет Мичио Каку, объясняя с научной точки зрения и происхождение Земли, и существование параллельных вселенных, и путешествия во времени, и многие другие кажущиеся фантастическими явления.

Мичио Каку

Физика / Образование и наука