Но в 1908 г. он не мог дальше преследовать свои амбиции, потому что о клеточных химических реакциях с участием кислорода не было известно ничего. Спектрофотометрия – идентификация химических элементов по частотам, которые они поглощают, – была новой отраслью, и к живым существам ее еще не применяли. Существующие методики выращивания клеток в культуре и измерения газообмена были примитивными. Варбург понял, что до того, как удастся разобраться с механизмами метаболизма рака, сначала необходимо провести фундаментальное исследование метаболизма нормальных клеток. Исследования рака подождут.
В следующие годы – с перерывом на армейскую службу во время Первой мировой войны – Варбург, используя методики собственной разработки, доказал, что дыхание в клетках осуществляется с помощью маленьких структур, которые он назвал гранами, а мы сейчас зовем митохондриями. Он экспериментировал с воздействием спиртов, синильной кислоты и других веществ на дыхание и пришел к выводу, что ферменты в гранах содержат тяжелый металл – как он подозревал (и позже доказал), железо. Он провел эпохальные эксперименты с использованием спектрофотометрии, которые доказали, что та часть фермента, которая реагирует с кислородом в клетке, неотличима от части гемоглобина, которая связывает кислород в крови. Это вещество, называемое гемом, является порфирином, связанным с железом, а содержащий его фермент, который есть во всех клетках и благодаря которому возможно дыхание, ныне известен как цитохромоксидаза. За эту работу Варбург в 1931 г. был удостоен Нобелевской премии по медицине.
Тем временем в 1923 г. Варбург продолжил свои исследования рака, начав с того места, где остановился пятнадцать лет назад. «Отправной точкой, – писал он, – стало то, что клеточное дыхание в яйцеклетках морских ежей усиливалось в шесть раз в момент оплодотворения», то есть в тот момент, когда они переключались из состояния покоя в состояние роста. Он ожидал, что такое же усиление процессов клеточного дыхания увидит и в раковых клетках. Но, к его изумлению, обнаружился прямо противоположный процесс. Опухоль у крысы, с которой он работал, потребляла намного
«Этот результат показался таким поразительным, – писал он, – что оправданным казалось предположение, что у опухоли нет подходящих материалов для сжигания». Так что Варбург начал добавлять в культуру разные питательные вещества, ожидая все же увидеть заметное усиление дыхания. Но после добавления глюкозы дыхание в опухоли вообще прекратилось! Пытаясь понять, почему это произошло, он обнаружил, что в культуре накопилось огромное количество молочной кислоты. Опухоль вырабатывала молочную кислоту со скоростью 20 % своего веса в час. За единицу времени она вырабатывала в 124 раза больше молочной кислоты, чем кровь, в 200 раз больше, чем мышца лягушки в покое, и в 8 раз больше, чем мышца лягушки, работающая на пределе сил. Да, опухоль потребляла глюкозу, но не пользовалась для этого кислородом[393]
.В дополнительных экспериментах с другими типами рака животных и людей Варбург обнаружил, что по такому принципу работают все раковые клетки и ни одна нормальная. Этот факт показался Варбургу невероятно важным – даже, можно сказать, ключом к причинам болезни.
Выработка энергии из глюкозы без использования кислорода, так называемый анаэробный гликолиз (или, как его называют иначе, ферментация), – это очень неэффективный процесс, который происходит в малых масштабах в большинстве живых клеток, но приобретает важное значение лишь при недостатке кислорода. Например, бегуны во время рывка заставляют мышцы потреблять энергию быстрее, чем легкие успевают доставлять к ним кислород. Их мышцы на время начинают вырабатывать энергию анаэробно (без кислорода), вызывая кислородный голод, который утоляется, когда бегун заканчивает рывок и останавливается, тяжело дыша. В экстренных случаях анаэробный гликолиз способен быстро снабжать нас энергией, но он вырабатывает намного меньше энергии из такого же количества глюкозы и вызывает накопление в тканях молочной кислоты, которую нужно из них выводить.
Ферментация – это очень древняя форма метаболизма, благодаря которой все живые существа вырабатывали энергию в течение миллиардов лет, прежде чем на Земле появились зеленые растения и наполнили атмосферу кислородом. Некоторые современные примитивные формы жизни – например, многие бактерии и дрожжи – до сих пор ею пользуются, но все сложные организмы отказались от этого метода поддержания жизни.