Читаем Мир, созданный химиками. От философского камня до графена полностью

Графит, тот самый, что в карандаше, в отличие от алмаза, легко истирается и превращается на бумаге в буквы — к примеру, в рукописи великих романов или письма с фронта. Говорят, что специалисты американского космического агентства НАСА якобы потратили несколько миллионов долларов на разработку ручки для письма в космической невесомости. Оканчивается история ударной фразой: «А русские космонавты пользовались карандашом». Свойство графита истираться и оставлять следы на бумаге связано с тем, что графит представляет собой стопку слоев из шестигранников, в вершинах которых находятся атомы углерода. Сами слои между собой связаны слабо, и графит легко расслаивается — это и есть следы на бумаге. Графит можно сравнить с тортом «Наполеон», где коржи не очень прочно склеены кремом.

Но графит, как и алмаз, состоит только из атомов углерода. Поэтому всегда было заманчивым как-то превратить графит в алмаз, что и было сделано. При огромном давлении и определенной температуре сейчас алмазы получают из графита тоннами. Правда, бриллианты из таких алмазов выходят не очень красивые, зато поверхности всяких буровых инструментов и обычных сверл, утыканные этими недорогими искусственными алмазами, работают просто великолепно.

А аморфный углерод — это просто мельчайшие частички графита, своей отдельной структуры у него нет. Строго говоря, аморфный углерод даже и не стоило выделять в отдельную аллотропическую модификацию. Из этого углерода состоит бурый и каменный уголь, сажа, а также активированный уголь — его приходится принимать некоторым гражданам после неумеренного употребления того самого напитка, авторство которого приписывают Дмитрию Ивановичу Менделееву.

<p>Мячи и плоскости</p>

В 1985 году химики сделали потрясающее открытие: была обнаружена принципиально новая модификация углерода — фуллерен. Исследователи изучали пары графита, испаренного лазерным лучом, и нашли в них молекулы, состоящие из 60 и 70 атомов углерода. После многочисленных экспериментов было установлено, что С60 представляет собой трехмерное тело икосаэдр, состоящий из 20 шестиугольников и 12 пятиугольников — точно как сшитый из разных кусков кожи футбольный мяч. В более крупном С70 в середину «мяча» врезан пояс из 10 атомов углерода — такая молекула напоминает удлиненный мяч для регби. Эти молекулы первооткрыватели назвали бакминстерфуллеренами в честь архитектора Бакминстера Фуллера, который строил здания именно из подобных структурных элементов — шести- и пятиугольников. Вскоре, впрочем, название сократили до фуллеренов. Через 11 лет после открытия ученые получили Нобелевскую премию по химии, и все эти годы обнаружились все новые и новые фуллерены.

Рекордным является фуллерен с 400 атомами углерода, таких конструкций даже Фуллер не делал.

Как мы уже говорили, простейший фуллерен С60 в точности похож на футбольный мяч, а следующий С70 — уже на мяч для регби. Если продолжить эту операцию и вставлять все новые углеродные пояса в фуллереновый «мяч», то мы в какой-то момент получим трубку. Оканчиваться трубки будут как бы половинками фуллерена. Можно и иначе описать мысленную операцию получения этих нанотрубок, или тубулен: представьте себе, что мы ухватились за два противоположных края фуллерена и начали его растягивать. Если откуда-то будут постоянно поступать атомы углерода, то мы создадим такую трубу, цилиндр с округлыми краями.

Не мысленно, а на практике нанотрубки были получены в 1990-е годы то ли японцем Иидзимой, то ли еще кем-то одновременно с ним. А то и раньше. Но самое главное, что теперь их научились получать килограммами, и это еще одна аллотропическая модификация нашего многоликого углерода. Из нанотрубок делают сверхпрочные нити, используемые для композиционных материалов, в электронике, в медицине. В качестве экзотического, но еще нереализованного варианта использования нанотрубок размышляют о космическом лифте. Это вот что такое: от Земли к космической станции протянут сверхпрочный трос, по которому будет ездить лифт с грузом или людьми. Все это гораздо дешевле использования ракет, и нанотрубки по своей теоретической прочности отлично подходят для плетения такого троса. Но пока, правда, длинных нанотрубок никто не получал.

И наконец, в 2004 году выпускники подмосковного Физико-технического института Андрей (Андре) Гейм и Константин Новосёлов получили последнюю на данный момент аллотропическую модификацию углерода — одномерные пленки под названием «графен». Этот графен не что иное, как один корж из того самого торта «Наполеон», один слой в графите. Есть такое выражение: в мире нет ничего более плоского, чем графен. За открытие этого поразительного по своим свойствам вещества Гейм и Новосёлов получили в 2010 году Нобелевскую премию. Графен прочнее стали в 200 раз, обладает необычными электрическими свойствами и в перспективе сможет заменить дорогой кремний при производстве электронных компонентов. Из графена уже научились делать прозрачные ленты, и революция в электронике не за горами.

Перейти на страницу:

Все книги серии Galileo

Похожие книги

Бог как иллюзия
Бог как иллюзия

Ричард Докинз — выдающийся британский ученый-этолог и популяризатор науки, лауреат многих литературных и научных премий. Каждая новая книга Докинза становится бестселлером и вызывает бурные дискуссии. Его работы сыграли огромную роль в возрождении интереса к научным книгам, адресованным широкой читательской аудитории. Однако Докинз — не только автор теории мемов и страстный сторонник дарвиновской теории эволюции, но и не менее страстный атеист и материалист. В книге «Бог как иллюзия» он проявляет талант блестящего полемиста, обращаясь к острейшим и актуальнейшим проблемам современного мира. После выхода этой работы, сегодня уже переведенной на многие языки, Докинз был признан автором 2006 года по версии Reader's Digest и обрел целую армию восторженных поклонников и непримиримых противников. Споры не затихают. «Эту книгу обязан прочитать каждый», — считает британский журнал The Economist.

Ричард Докинз

Научная литература
Как же называется эта книга?
Как же называется эта книга?

Книга американского профессора Р. Смаллиана, написанная в увлекательной форме, продолжает серию книг по занимательной математике и представляет собой популярное введение в некоторые проблемы математической логики. Сюда входят более 200 новых головоломок, созданных необычайно изобретательным автором. Задачи перемежаются математическими шутками, анекдотами из повседневной жизни и неожиданными парадоксами. Завершает книгу замечательная серия беллетризованных задач, которые вводят читателя в самую суть теоремы Курта Гёделя о неполноте, — одного из замечательнейших результатов математической логики 20 века.Можно сказать — вероятно, самый увлекательный сборник задач по логике. Около трехсот задач различной сложности сгруппированы по разделам, герои которых Рыцари и Лжецы, Алиса в Стране Чудес, Беллини и Челлини и даже сам граф Дракула! Если человек произносит «Я лгу» — говорит ли он неправду? Почему физики и математики по-разному решают задачи? Как вовремя распознать упыря? Ответы на эти и более серьезные вопросы Вы найдете в этом сборнике, а может быть, и ответ на вопрос «Как же называется эта книга?». Для всех, кто хочет научиться рассуждать.

Рэймонд Меррилл Смаллиан

Научная литература