Читаем Мир в ореховой скорлупке полностью

Рис. 2.9 Движение волны и колебания маятника

Электромагнитное излучение распространяется сквозь пространство как волна, в которой электрическое и магнитное поля колеблются, подобно маятнику, в направлении, поперечном движению самой волны. Излучение может состоять из колебаний полей с разными длинами волн.

Согласно квантовой теории основное состояние маятника, то есть состояние с наименьшей энергией, — это вовсе не покой в самой низкоэнергетической точке в направлении прямо вниз. В данном случае он имел бы одновременно определенное положение и определенную скорость, равную нулю.

Это нарушало бы принцип неопределенности, который запрещает точное измерение положения и скорости в один и тот же момент времени. Неопределенность положения, умноженная на неопределенность импульса[6], должна быть больше некоторой величины, известной как постоянная Планка — ее численное значение слишком длинное, чтобы его здесь выписывать, поэтому мы будем обозначать ее символом h.

Так что основное состояние маятника, или состояние с наименьшей энергией, имеет ненулевую энергию в противоположность тому, что можно было ожидать. Оказывается, даже в основном состоянии маятник, как и любая колебательная система, должен совершать минимального размера флуктуации, называемые нулевыми колебаниями. Это означает, что маятник необязательно будет указывать прямо вниз, есть также вероятность обнаружить его отклоненным на небольшой угол от вертикали (рис. 2.10). Подобным образом даже в вакууме, то есть в состоянии наименьшей энергии, волны максвелловского поля не затухают до нуля, но могут иметь небольшие размеры. Чем выше частота (количество колебаний в минуту) маятника или волны, тем больше энергия основного состояния.

Рис. 2.10 Маятник и распределение вероятности

Согласно принципу Гейзенберга маятник не может висеть, указывая строго вниз, и обладать при этом нулевой скоростью. Квантовая теория предсказывает, что даже в состоянии наименьшей энергии он должен испытывать минимальные флуктуации.

Это означает, что положение маятника должно задаваться распределением вероятности. Если он находится в основном состоянии, то с наибольшей вероятностью будет указывать прямо вниз, но имеется также вероятность обнаружить его под небольшим углом к вертикали.

При учете флуктуаций основного состояния в максвелловском поле электрона его видимые масса и заряд оказываются бесконечными, что, конечно, не соответствует наблюдениям. Однако в 1940-х гг. физики Ричард Фейнман, Джулиан Швин-гер и Синъитиро Томонага разработали согласованный метод устранения, или «вычитания», этих бесконечностей, чтобы иметь дело только с конечными наблюдаемыми значениями масс и энергий[7]. И все же флуктуации основного состояния вызывают небольшие эффекты, которые можно измерить и которые подтверждаются экспериментом. Похожие схемы избавления от бесконечностей работают и для полей Янга — Миллса в теории, которую разработали Чженьнин Янг и Роберт Миллс. Теория Янга — Миллса — это расширение теории Максвелла, которое описывает действие двух других сил, называемых слабым и сильным ядерными взаимодействиями. Однако в случае квантовой теории гравитации флуктуации основного состояния вызывают гораздо более серьезные эффекты. Здесь тоже каждая длина волны имеет свою энергию основного состояния.

Поскольку нет ограничений на то, сколь короткими могут быть длины волн максвелловского поля, то в любой области пространства-времени содержится бесконечное число различных волн и бесконечное количество энергии основного состояния. А вследствие того что плотность энергии, как и вещество, служит источником гравитации, эта бесконечная плотность энергии должна означать, что у Вселенной достаточно тяготения, чтобы свернуть пространство-время в одну точку, чего, однако, очевидно, не происходит.

Перейти на страницу:

Похожие книги

Теория струн и скрытые измерения Вселенной
Теория струн и скрытые измерения Вселенной

Революционная теория струн утверждает, что мы живем в десятимерной Вселенной, но только четыре из этих измерений доступны человеческому восприятию. Если верить современным ученым, остальные шесть измерений свернуты в удивительную структуру, известную как многообразие Калаби-Яу. Легендарный математик Шинтан Яу, один из первооткрывателей этих поразительных пространств, утверждает, что геометрия не только является основой теории струн, но и лежит в самой природе нашей Вселенной.Читая эту книгу, вы вместе с авторами повторите захватывающий путь научного открытия: от безумной идеи до завершенной теории. Вас ждет увлекательное исследование, удивительное путешествие в скрытые измерения, определяющие то, что мы называем Вселенной, как в большом, так и в малом масштабе.

Стив Надис , Шинтан Яу , Яу Шинтан

Астрономия и Космос / Научная литература / Технические науки / Образование и наука