Читаем Мир вокруг нас полностью

Нелинейные волны как явление — известны ещё с 19-го века (но начали активно изучаться — не ранее, чем во второй половине 20-го века). Первой из наблюдавшихся волн такого рода — был бугорок на воде (солитон Рассела), движущийся по водной поверхности без изменения формы, т. е. не расплывающийся, и не теряющий энергии, в отличие от обычных, всем хорошо известных (= линейных) волн на воде. В современности, изучены многие разновидности нелинейных волн, в самых различных средах. Такие волны — называются солитонами, и их изучением занимается соответствующая научно-философская дисциплина — теория солитонов.

Нелинейные волны — сильно отличаются от привычных, часто встречающихся в повседневной жизни, простых, или линейных волн (звуковых волн, света, океанских волн и т. п.). Так, известно, что в отличие от линейных волн, нелинейные волны, как упоминалось ранее — не теряют энергии при своём распространении, т. е. могут существовать неограниченно долго, причём способны иметь шарообразную форму своей центральной части (эпицентра), а также могут взаимодействовать друг с другом. Стабильность, и другие вышеназванные (т. е. частицеподобные, или корпускулярные) свойства таких волн — обусловлены их нелинейной природой.

Вполне естественно предположить, что в основе нелинейных волн (= солитонов) в кристаллическом вакууме — лежат дислокации (= одна из разновидностей солитонов), по аналогии с дислокациями в обычных, земных кристаллах. Дислокации в обычных кристаллах — хорошо изучены, и возникают, например, если выбить атом из структуры кристаллической решётки. На месте выбитого атома — образуется дырка, однако соседние атомы — стремятся заполнить её, немного стягиваясь к месту отсутствия атома, т. о. смещаясь со своих обычных местоположений. В итоге — образуется дислокация-разрежение, т. е. наглядно видимое разрежение и искажение пространства, образованного атомами (а из-за неразрывной связи пространства и времени — это, более точно, искривление пространства-времени). В другом месте, куда попал выбитый атом — образуется дислокация, состоящая, наоборот, из увеличения плотности пространства, образованного атомами (и такого же искажения его геометрии) — это дислокация-уплотнение. У дислокации-разрежения и дислокации-уплотнения — есть некое подобие с частицами вещества и антивещества, но для элементарных частиц, как увидим, причины их принадлежности к веществу или антивеществу — оказываются заключены в другом.

Дислокация в обычном кристалле — способна свободно двигаться сквозь кристалл, не встречая сопротивления. Нужно лишь подтолкнуть её (например, звуковой волной или другой дислокацией). Известно, что движение дислокации в обычном кристалле — подчиняется формулам теории относительности (т. н. преобразованиям Лоренца), если скорость света в них — заменить скоростью звука, т. к. последняя является предельной скоростью в обычных средах, вместо скорости света. Благодаря этому, для дислокаций — характерны эффекты, следующие из теории относительности (= т. н. релятивистские эффекты), в т. ч. рост массы (но т. н. эффективной массы), сокращение длины в направлении движения (но с приближением скорости дислокации к скорости звука, а не света), и т. п.

Дислокации, аналогичные таковым в обычных кристаллах, но существующие в кристаллической среде вакуума, как основа элементарных частиц — уже многое значит для объяснения сути и общих свойств элементарных частиц, т. к. позволяет легко подойти к объяснению причины, почему существует электрон, и не существует пол-электрона, т. е. подойти к объяснению наблюдаемой неделимости элементарных частиц, а также обнаружить причину размазанности частицы по неограниченному пространству, её корпускулярно-волнового дуализма, сущности искривлений пространства-времени (= полей), и т. п.

Для объяснения же разнообразных частных свойств элементарных частиц (в т. ч. спина, зарядов полей, и всевозможных квантовых чисел, определяющих виды частиц), этого, однако — оказывается мало, и требуется более подробное рассмотрение структуры вакуума, из которой эти свойства оказываются вытекающими:

Структура вакуума

Если взять обычные, Земные кристаллы — то мы увидим, что они отличаются большим разнообразием форм, что обусловлено разнообразием их возможной внутренней структуры, т. е. форм кристаллической решётки (= типов её симметрии). Элементы кристаллической решётки (атомы, и т. п.) т. о. располагаются, в разных кристаллах — по-разному, и возможно большое число вариантов их расположения, а значит, множество типов кристаллических решёток.

Подобное — применимо и к кристаллической среде вакуума. Но как узнать, какую конкретную структуру имеет кристаллическая решётка из частиц среды вакуума?

Перейти на страницу:

Похожие книги

Физика в бою
Физика в бою

В книге коллектива авторов в живой, популярной форме рассказывается о том, какую важную роль играет физика в современном военном деле, как используются ее достижения для дальнейшего развития ракетно-ядерного оружия, повышения боевых возможностей сухопутных войск, авиации и военно-морского флота Авторы показывают, что без знания основ физики сейчас невозможно плодотворно изучать и квалифицированно использовать боевую технику и вооружение, видеть, в каком направлении идет их прогресс. Встречаясь с известными еще со школьной скамьи физическими законами, читатель узнает, каких интересных и зачастую необычных результатов добиваются ученые и инженеры, используя эти законы для решения сложных проблем современного боя Читатель познакомится с новейшими военно-техническими достижениями, родившимися на основе использования успехов физики, ее тесного контакта с техническими науками.Редактор-составитель инженер-подполковник Жуков В.Н.

авторов Коллектив , Владимир Николаевич Жуков

Физика / Технические науки / Образование и наука