Рассмотрим каналы распада лития-11 (табл. 4). Как видно из табл., литий-11 претерпевает b–
распад, что говорит о достаточной связи (выгоде) всех нейтронов в ядре, и занятости более низких энергоуровней (кроме свободного положения в базовом энергоуровне, необходимого для механизма водорода-6), что как раз соответствует уже рассмотренной структуре лития-11 (рис. 67). В 86,3% случаев, b– распад сопровождается вылетом нейтрона, что так же легко объяснимо этой структурой, т. к. она схожа с литием-9, в котором преобладает такой же канал распада.Как и в литии-9, в литии-11 возможен и чистый b–
распад, без дополнительного вылета нейтронов (что также может объясняться сходством структур).Наличие двух дополнительных нейтронов в литии-11, с учётом их весьма слабой связи (гало-нейтроны) — добавляет возможность ещё нескольких, хотя и редких, путей b–
распада — с эмиссией двух нейтронов (4,1%), и трёх нейтронов (1,9%).Ещё более редкие пути распада (с вылетом ядра дейтерия, и т. п. (табл. 4)) — опускаем.
Далее — следует малоизученный изотоп литий-12 (о времени жизни этого изотопа известно лишь, что оно меньше 10 нс), распадающийся через вылет нейтрона. Вероятная структура этого ядра — показана на рис. 71. Возможность этой структуры, т. е. связанность нейтронов в ней — подтверждается существованием изотопа бериллия-16 (последний изотоп бериллия, имеющий время полужизни 6,5x10–22
сек, и распадающийся путём вылета двух нейтронов) [8], структура которого — представляется аналогичной, см. рис. 72. Очевидно, что распад лития-12 и бериллия-16, исходя из представленных конфигураций — должен быть аналогичен, по механизму, распаду лития-10, что объясняет известный / наблюдаемый вылет одного / двух нейтронов.Рис. 71
Рис. 72
Далее: Литий-13 — последний изотоп лития. Как и литий-12 — он малоизучен (спин этого ядра — напрямую неизвестен). Структуру ядра лития-13 (возможное основное состояние), можно получить, добавив нейтрон в вакантное место, имеющееся в литии-12 (и бывшее заполненным в ядре гелия-10 и изомере лития-10), см. рис. 73. Как видно, все, наиболее низкие и выгодные места для нейтронов, в этом ядре — заполнены, и добавлять нейтроны, в общем, больше некуда, поэтому неудивительно, что пока — это последний известный изотоп лития.
Рис. 73
Итак, мы рассмотрели структуру и объяснения свойств ядер всех 10 изотопов элемента лития. Вместе с ядрами водорода и гелия, мы т. о. прошлись по 25 первым изотопам таблицы Менделеева, с т. зр. их наглядного внутреннего строения, объясняющего их различные свойства. Это — уже много значит, для дальнейшего построения ядер более тяжёлых элементов по аналогии (по выявленным правилам (закономерностям), но применяемым к новым и сложным ядрам).
На примере первых 25 изотопов таблицы Менделеева, мы рассмотрели причины различий величин спинов ядер, их времён полужизни, числа изотопов у элементов, причины различных каналов распада и их соотношения, наличия ядерных изомеров и гало-нейтронов. Упрощая, можно сказать, что мы рассмотрели примерно половину, из числа того основного, что требуется для представления о ядерном уровне вещества. Но идём далее:
Строение протонизбыточных изотопов второго ряда таблицы Менделеева
В данной главе, мы рассмотрим строение самых первых изотопов у каждого из элементов второго ряда таблицы Менделеева. Нам предстоит выяснить, почему изотопы этих элементов (от лития до неона, см. табл. 3) — начинаются именно с тех протонизбыточных изотопов, с которых начинаются, например, почему первый изотоп углерода — углерод-8, и почему нет углерода-7, и т. п. На постнеклассическом этапе, всё это — можно увидеть из наглядной геометрии, т. е. непосредственно, в отличие от неклассической ненаглядности объектов микромира. Итак, начнём:
Мы уже рассматривали строение протонизбыточных изотопов лития (лития-4 и -5), и объясняли их свойства, в т. ч. распады, поэтому переходим сразу же к первому известному протонизбыточному изотопу следующего элемента — бериллию-6, свойства которого — представлены в табл. 5. Внутреннее устройство ядра бериллия-6 — показано на рис. 74. На рис. видно, что боковые протоны в бериллии-6 — располагаются по разные стороны от плоскости симметрии ядра (суммарный спин ядра — 0), и т. о. способны уравновешивать смещение кварковой плотности, производимое друг другом (напомним, что (кварковая) плотность тут — лишь условное понятие, применяющееся из соображений удобства, а не реальная плотность, т. к. элементарные частицы — бесплотны).
Протоноизбыточные изотопы бериллия
Рис. 74