Читаем Мир вокруг нас полностью

Рис. 175


Неодим-150 — содержит на 30 нейтронов больше, чем протонов, и в конфигурации на рис. 175-а, в нём можно видеть четыре нейтронных моста. Вообще, ядро может связать и гораздо больше нейтронов: см. например, неодим-160, на рис. 176, см. также табл. 46. На рис. видно, что в два шага, ядро неодима, (геометрически) связывает 40 нейтронов сверх протонов (и фактически, может связать ещё больше, — в «два с половиной» или три шага (пример: 161Nd, табл. 46)). Наглядная геометрия ядра, как видно — определяет возможности ядра по связыванию нейтронов.



Рис. 176


Таблица 46 [8]

Последние известные (чётный и нечётный) изотопы неодима



Далее: Рассмотрим следующий (чётный) f-элемент — самарий. Последний его стабильный изотоп, самарий-154 [8] — связывает столько же нейтронов, сверх протонов, сколько и аналогичный изотоп предыдущего элемента, неодим-150 (в то время как при переходе от церия к неодиму, неодим связывал на 4 нейтрона (сверх протонов) больше, чем церий). Это можно объяснить добавлением протонов, при образовании самария-154 — без появления нового нейтронного моста (он уже образован), притом в дальнюю часть ядра (где имеется относительный недостаток протонов из-за их перехода в ближнюю (= правую) часть), см. рис. 177. Это — несколько восстанавливает симметрию ближней и дальней частей ядра, хотя в целом, ядро ещё остаётся сильно асимметричным (в то время как ядро церия-142 было симметричным).



Рис. 177


У следующего элемента, гадолиния, можно предполагать добавление протонов, наоборот, в ближнюю часть ядра, с переходом протонов из дальней части, и образованием выгодных уравновешенных кластеров трития в ближней и дальней частях ядра, см. рис. 178. Благодаря этому, последний стабильный изотоп этого элемента — эффективно связывает на четыре нейтрона больше самария-154, — это гадолиний-160 [8] (рис. 178). Аналогичный результат, впрочем, можно получить и добавив протоны, наоборот, в дальнюю часть ядра (альтернативная конфигурация), см. рис. 179.



Рис. 178



Рис. 179


Следующий f-элемент, диспрозий, также можно получить, добавляя протоны двояко, см. последний его стабильный изотоп — диспрозий-164 [8], на рис. 180. В осуществлении выбора между различными возможными конфигурациями ядер, может помочь наблюдение (измерение) значений электрических квадрупольных моментов ядер, о чём, подробнее — позже.



Рис. 180


Итак, мы прошлись по вероятному строению ядер f-элементов, от первого элемента, церия, к элементу, расположенному в середине ряда f-элементов, гадолинию, и чуть далее, к диспрозию. Данных примеров, вероятно, вполне достаточно, для некоторого общего представления, хотя тут всё ещё сильно упрощено.

Далее, обратим внимание на то, что из представленных ядер, наибольшей симметрией между ближней и дальней частью ядра, обладал элемент церий, вернее, последний его стабильный изотоп, церий-142 (см. рис. 171). В этом, ядро церия-142 — оказывается схоже с ядром палладия-110 (рис. 170). При этом, у элемента церия, как и у элемента палладия — наблюдается минимальное число стабильных изотопов, по сравнению с соседними элементами — см. табл. 47 и 48. Причина этого минимума, очевидно — связана с симметрией.


Таблица 47 [8]

Число стабильных изотопов и изотопов с периодами полураспада более 13,8 млрд лет, а также изотопов с временем полураспада более года, у церия и смежных чётных элементов



Таблица 48 [8]

Число стабильных изотопов и изотопов с периодами полураспада более 13,8 млрд лет, а также изотопов с временем полураспада более года, у палладия и смежных чётных элементов



Следует смотреть, однако, не только на само наличие симметрии ядра, но и на её качество: так, у церия-142 — видно, что периферические части ядра — как бы перегружены протонами, и т. о. отнять от этого ядра (без потери ядром стабильности), можно только очень малое число нейтронов (см. табл. 44).

В противоположность церию-142, последний почти стабильный и симметричный изотоп элемента олова, олово-126 (см. табл. 49) — оказывается, наоборот, перегружен нейтронами, см. рис. 181. Как видно, на периферии этого ядра располагаются уравновешенные кластеры трития, т. о. олово-126 эффективно связывает, суммарно, столько же нейтронов сверх протонов, сколько и гораздо более тяжёлый, церий-142. Поэтому нейтроны от ядра олова-126 можно легко и долго отнимать (см. табл. 49). В итоге, можно объяснить, почему у элемента олова — самое большое число стабильных изотопов, среди всех элементов в таблице Менделеева — 10 (табл. 49).


Таблица 49 [8]

Перейти на страницу:

Похожие книги

Физика в бою
Физика в бою

В книге коллектива авторов в живой, популярной форме рассказывается о том, какую важную роль играет физика в современном военном деле, как используются ее достижения для дальнейшего развития ракетно-ядерного оружия, повышения боевых возможностей сухопутных войск, авиации и военно-морского флота Авторы показывают, что без знания основ физики сейчас невозможно плодотворно изучать и квалифицированно использовать боевую технику и вооружение, видеть, в каком направлении идет их прогресс. Встречаясь с известными еще со школьной скамьи физическими законами, читатель узнает, каких интересных и зачастую необычных результатов добиваются ученые и инженеры, используя эти законы для решения сложных проблем современного боя Читатель познакомится с новейшими военно-техническими достижениями, родившимися на основе использования успехов физики, ее тесного контакта с техническими науками.Редактор-составитель инженер-подполковник Жуков В.Н.

авторов Коллектив , Владимир Николаевич Жуков

Физика / Технические науки / Образование и наука