Считается, что при Большом Взрыве — появилось само пространство и время. Поэтому о том, что было до Большого Взрыва — в рамках неклассических представлений, говорить бессмысленно (без времени — не существовало момента «до»).
Причины Большого Взрыва, на неклассическом этапе, в целом — неизвестны.
Однако, сам ход Большого Взрыва — был описан, на этом этапе, достаточно подробно: он представлен в виде ряда сменяющих друг друга, стадий, связанных с расширением (конечной) Вселенной (или растяжением пространства-времени), см. табл. 63. Каждая стадия — характеризуется соответствующей температурой и плотностью вещества, что определяет основные процессы, идущие на этой стадии.
Периодизация Большого Взрыва
Примечание:
Например, стадия первичного нуклеосинтеза — начинается, когда плотность вещества, и температура соответственно, вследствие расширения (конечной) Вселенной, падают настолько (температура — до 109
K [34]), что становится возможным образование простейших атомных ядер, при столкновениях элементарных частиц (нуклонов): На этой стадии, длившейся примерно с третьей по двадцатую минуты от начала Большого Взрыва [33], возникают условия, чтобы образующиеся ядра — сохранялись, а не расщеплялись высокоэнергетичными фотонами (гамма-квантами) и столкновениями с другими высокоэнергетичными частицами.В это время — протоны и нейтроны вступают в ядерные реакции, образуя, в подавляющем числе случаев, ядра гелия-4 (т. е. альфа-частицы), составляющие, в конце этой стадии, согласно расчётам [35] — около 8% по числу ядер (или 25% по массе), от ядер водорода. Такое (или почти такое) соотношение элементов водорода и гелия — как известно, наблюдается в межзвёздных (и межгалактических) облаках газа, что свидетельствует о дозвёздном происхождении гелия в этих облаках. (Имеются также следы более тяжёлого элемента, лития, а также изотопа водорода, дейтерия, и изотопа гелия — гелия-3, также обязанные стадии первичного нуклеосинтеза).
После образования атомных ядер, и последующего долгого периода пребывания вещества в состоянии плазмы, стало возможным, в следующую эпоху, образование атомов (вследствие того, что кинетическая энергия электронов, а также плотность вещества — достаточно снизились). Эта стадия — называется рекомбинацией, и заканчивается примерно 377 000 лет после Большого Взрыва [36], когда (конечная) Вселенная (и окружающий Мир, соответственно) — становится прозрачной для излучения. (Это излучение остаётся в качестве реликтового (фонового) излучения, доступного, в современности, наблюдениям).
Далее — происходило образование более высоких уровней вещества (подробнее — это будет рассматриваться позже).
Теперь посмотрим, подробнее, как на неклассическом этапе описываются более ранние стадии Большого Взрыва, т. е. до первичного нуклеосинтеза:
Согласно т. н. традиционной (не инфляционной) модели (общепринятой, как впрочем и инфляционная), о стадиях Большого Взрыва — начинают говорить, с т. н. планковского времени, составляющего невообразимо малое число — 10–43
секунды от начала Большого Взрыва. До этого момента, какие бы то ни было расчёты, основанные на неклассических теориях — считают неприменимыми, а состояние Вселенной — обозначают как сингулярное. В момент времени 10–43 сек — рождается само время (10–43 сек — считается минимальным возможным отрезком времени в природе). Размер видимой части Вселенной (= окружающего Мира, который может совпадать, в границах, с конечной Вселенной), в эту, первую (на неклассическом этапе), стадию Большого Взрыва — умещался, как считается, в масштабе не более, чем порядка 10–33 см [37]. В эту (планковскую) стадию Большого Взрыва — все взаимодействия объединены в одно фундаментальное взаимодействие (т. е. ещё нет ни сильных, ни электрослабых, ни гравитационных сил).С 10–43
сек, происходит отделение гравитационного взаимодействия. Начинается эпоха Великого объединения, когда электрослабые и сильные взаимодействия объединены в единое поле Великого объединения, отдельно от которого — остаётся гравитация.Квантами, переносящими взаимодействие Великого объединения — считаются (гипотетические) X- и Y-бозоны, с дробными электрическими зарядами +4/3 и +1/3 соответственно. Массы этих частиц (около 1015
ГэВ) [38] — слишком велики для создания их в ускорителе (коллайдере), в настоящее время. Косвенно же, о возможном существовании таких частиц (в условиях современного Мира — как «виртуальных») — могло бы свидетельствовать обнаружение нестабильности протона (например, распада его на позитрон и нейтральный пи-мезон). Однако эксперименты, на данный момент, показывают, что протон — как минимум, на порядки стабильнее, чем ожидалось в рамках простейшего варианта теории Великого объединения [39] [40]. (Поиски распада протона — продолжаются).