Читаем Мир вокруг нас полностью

Это — следующий уровень вещества, после молекул. Объекты этого уровня — состоят из молекул. Простые молекулярные тела, в отличие от молекул — удобно рассматривать как среды. Они могут быть твёрдые (например, кристалл сахара), жидкие (например, вода, в обычных условиях), или газообразные (например, атмосфера).

Твёрдые молекулярные тела — известны в двух формах: в форме молекулярных кристаллов, и в форме аморфных веществ.

Молекулярные кристаллы, в отличие от ионных кристаллов и монокристаллов металлов (= молекул) — имеют, как уже говорилось, значительно более низкие температуры плавления (из-за относительной слабости межмолекулярных химических связей), а также низкую плотность, и т. п. Вышесказанное — не относится молекулярным кристаллам, образуемым металлами (т. е. поликристаллам, состоящим из связанных молекул-монокристаллов), — которые имеют, в отличие от других молекулярных кристаллов, высокую температуру плавления и плотность, сравнимые с таковыми для ионных кристаллов. Примерами молекулярных кристаллов металлов = поликристаллов — могут служить металлы в самородной форме, и металлические изделия.

Аморфные твёрдые молекулярные тела, в отличие от кристаллов — имеют хаотичную внутреннюю структуру (лишены т. н. дальнего порядка, в расположении элементов своей структуры, свойственного кристаллам). Кроме того, молекулярные кристаллы металлов (поликристаллы), в той или иной степени — тоже близки к аморфным молекулярным телам, хотя традиционно к ним не относятся (степень кристалличности или аморфности, у металлического поликристалла — зависит от величины разупорядоченности монокристаллов, что отражается в таких его физических свойствах как например: степень прочности, и т. п.).

Далее: Жидкие простые молекулярные тела — это различные молекулярные жидкости, которые могут иметь простой или сложный молекулярный состав. Как пример молекулярной жидкости сложного молекулярного состава, можно назвать океан. В среде океана, как растворе — помимо всего прочего, возможно образование мицелл (= сфер из молекул, обладающих гидрофобной и гидрофильной частью), что могло играть роль в возникновении жизни на Земле (об этом — позже), см. рис. 233. Мицеллы, и т. п. — это явления в среде (океане, в данном случае), т. е. зависят от среды, без которой — не существуют, но среда (океан) — не состоит из них.



Рис. 233 [XXIV].Мицелла


Далее: Атмосфера планеты — газообразное простое молекулярное тело сложного молекулярного состава. Благодаря гравитации планеты, атмосфера представляет собой сильную систему (= ведущую себя как единое целое, более чем как совокупность элементов (все рассматриваемые уровни вещества — являются сильными системами, в то время как слабые — опускаются)). Благодаря неравномерности распределения энергии (= немаксимальной энтропии), атмосферы планет — включают в себя т. н. атмосферные явления (вихри, облака и т. п.).

К какому уровню вещества отнести вихри, облака, ветры и т. п., т. е. явления в среде? К явлениям в среде, относятся и нелинейные волны (солитоны) в молекулярных кристаллах, и элементарные частицы (нелинейные волны) в среде вакуума, и мицеллы в океане. На неклассическом этапе, все такие объекты, в целом — не считались уровнями вещества, или принадлежащими каким бы то ни было уровням вещества. На постнеклассическом этапе, в связи с дальнейшим изучением этих объектов, и изменением представлений об их роли в окружающем Мире, возникает необходимость определить уровни вещества, которым они соответствуют:

Для явлений в среде вакуума, всё просто: явления (нелинейные волны) — это элементарные частицы, а из-за их неразрывной взаимосвязи со средой вакуума, получается уровень элементарных частиц и вакуума. Для молекулярных кристаллов и солитонов в них, можно, для удобства, продолжать называть уровень, просто, уровнем простых молекулярных тел, подразумевая, при этом, более соответствующее, длинное название: простых молекулярных тел и явлений в них.

Аналогично — и для жидких и газообразных молекулярных тел, включая атмосферы планет и океаны (где среда, и явления в ней — рассматриваются в неразрывной взаимосвязи, образуя т. о. единый уровень вещества). В таком случае, атмосфера, как и океан — принадлежат уровню простых молекулярных тел и явлений в них. Т. е. явления (ветры, мицеллы, облака, водовороты и т. д.), будучи не существующими вне среды — образуют единый уровень вещества со средой.

Перейти на страницу:

Похожие книги

Физика в бою
Физика в бою

В книге коллектива авторов в живой, популярной форме рассказывается о том, какую важную роль играет физика в современном военном деле, как используются ее достижения для дальнейшего развития ракетно-ядерного оружия, повышения боевых возможностей сухопутных войск, авиации и военно-морского флота Авторы показывают, что без знания основ физики сейчас невозможно плодотворно изучать и квалифицированно использовать боевую технику и вооружение, видеть, в каком направлении идет их прогресс. Встречаясь с известными еще со школьной скамьи физическими законами, читатель узнает, каких интересных и зачастую необычных результатов добиваются ученые и инженеры, используя эти законы для решения сложных проблем современного боя Читатель познакомится с новейшими военно-техническими достижениями, родившимися на основе использования успехов физики, ее тесного контакта с техническими науками.Редактор-составитель инженер-подполковник Жуков В.Н.

авторов Коллектив , Владимир Николаевич Жуков

Физика / Технические науки / Образование и наука
Причина времени
Причина времени

Если вместо вопроса "Что такое время и пространство?" мы спросим себя "В результате чего идет время и образуется пространство?", то у нас возникнет отношение к этим загадочным и неопределяемым универсальным категориям как к обычным явлениям природы, имеющим вполне реальные естественные источники. В книге дан краткий очерк истории формирования понятия о природе времени от античности до наших дней. Первой ключевой фигурой книги является И. Ньютон, который, разделив время и пространство на абсолютные и относительные, вывел свои знаменитые законы относительного движения. Его идею об отсутствии истинного времени в вещественном мире поддержал И. Кант, указав, что оно принадлежит познающему человеку, затем ее углубил своим интуитивизмом А. Бергсон; ее противоречие с фактами описательного естествознания XVIII-XIX вв. стимулировало исследование реального времени и неоднородного пространства мира естественных земных тел; наконец, она получила сильное подтверждение в теории относительности А. Эйнштейна.

Автор Неизвестeн

Физика / Философия / Экология