С увеличением глубины, атомные ядра в коре нейтронной звезды — становятся всё более нейтроноизбыточными (хотя в условиях, имеющейся тут, достаточно высокой плотности вещества, и соответствующего давления — стабильны). В понимании состояния вещества в этой области — в значительной мере помогает получение (и изучение) нейтронизбыточных ядер в ускорителях. Наглядное же строение ряда нейтронизбыточных ядер — уже рассматривалось ранее.
На определённой глубине, кора нейтронной звезды заканчивается, — когда атомные ядра исчезают, и остаются только несвязанные нейтроны = вырожденный нейтронный «газ», составляющий большую часть нейтронной звезды.
О строении более глубоких, самых внутренних областей нейтронной звезды, в современности, однозначные (общепринятые) представления — отсутствуют. Это — один из примеров объекта, расположенного на границе окружающего Мира, поэтому рассмотрение строения центральных областей нейтронной звезды — оказывается вероятностным, т. е. предполагает ряд возможностей:
Так, например, предполагается возможность существования в центре нейтронной звезды, т. н. кварк-глюонной плазмы [111] (состоящей из u-, d- и s-кварков [112]). Кварк-глюонная плазма — считается полученной (в 2003 году), в экспериментах на ускорителе заряженных частиц [113]. Сущность кварк-глюонной плазмы — может представляться, упрощённо, следующей: элементарные частицы в ней сближены настолько, что расстояния между эпицентрами кварков, у соседних элементарных частиц — оказываются сравнимы с расстояниями между кварками в самих (сложных) элементарных частицах. В результате, кварк начинает принадлежать и соседним частицам, и т. о. кварк-глюонной плазме, и может отдаляться от другого кварка. Нечто подобное происходит, когда молекула с ионной связью, в растворе — разделяется на ионы, которые могут отдаляться друг от друга на любые расстояния, в пределах раствора. Но при испарении раствора, ионы вновь соединяются, образуя молекулы: так и при «испарении» кварк-глюонной плазмы, остаются только элементарные частицы, без свободных кварков (и без связывавших их, свободных, в пределах кварк-глюонной плазмы, глюонов, игравших роль «растворителя»).
В состоянии кварк-глюонной плазмы — велико содержание s-кварков (т. н. странных кварков), т. е. наиболее лёгких кварков второго поколения. Для наглядного представления об образовании s-кварков, вспомним пример со сближением двух солитонов-дислокаций в обычном кристалле, в ходе которого, солитон с двойной массой не образовывался. При дальнейшем сближении солитонов, т. е. затрате дополнительной энергии, могут рождаться пары дислокация-антидислокация, в т. ч. второго порядка (теоретическое предсказание, требует экспериментального подтверждения). В некоторой аналогии, при концентрации энергии (температуре и / или плотности), характерной для кварк-глюонной плазмы, рождаются пары частиц второго поколения, т. е. пары s- и анти-s-кварка.
Вообще, кварк-глюонная плазма предполагается основой строения не только самых внутренних областей нейтронной звезды, но и главным компонентом в строении гипотетических объектов, т. н. кварковых звёзд, которые занимали бы промежуточное положение между нейтронными звёздами и чёрными дырами.
Но вернёмся к нейтронной звезде: В целом, нейтронная звезда, по уровню вещества — аналогична атомному ядру, т. к. состоит, преимущественно, напрямую из элементарных частиц (нейтронов), как и ядро. Не случайно, что средняя плотность нейтронной звезды — схожа с ядерной (1017
кг/м3 [107] (для атомного ядра — 2,3x1017 кг/м3 [114])). В то же время, нейтронная звезда и атомное ядро — разные объекты, т. к. различаются по ряду свойств (по размеру, возможности звездотрясений, доминирующим силам (гравитационное взаимодействие, для нейтронной звезды, либо мезонное, для ядра атома), и т. п.). В целом, нейтронную звезду — удобно считать объектом уровня вещества планет и звёзд, в котором пропущены уровни от атомов (включительно) и выше (в пренебрежении наличием коры и атмосферы, — составляющих весьма малую долю от массы объекта).В другом постзвёздном объекте, белом карлике, доминирующий уровень вещества — расположен на уровень выше, чем в нейтронных звёздах: это — уровень атомов, т. е. весь белый карлик, по уровню вещества — примерно соответствует одному большому атому. Это — можно увидеть из того, что атомные ядра в белом карлике — полностью ионизированы, а вырожденный электронный газ — принадлежит всем ядрам одновременно, и электроны в нём, обладая различными (не одинаковыми, благодаря принципу запрета Паули) импульсами, располагаются (в постоянном движении) наиболее выгодным образом, по отношению друг к другу (подобно тому как и в электронной оболочке атома).