Читаем Мировая энергетическая революция полностью

Сегодня мы уже научились использовать этот потенциал с достаточно высокой эффективностью и умеренными затратами. Для этого применяются два основных типа генерирующих устройств, преобразующие солнечную энергию в электричество.

Первый, наиболее распространенный и доминирующий в мировой генерации, тип устройств использует фотоэлектрический эффект, он представлен широко известными солнечными модулями (панелями или батареями) – фотоэлектрическими преобразователями. Сфера деятельности, в которой применяется данный способ электрической генерации, обобщенно называется фотоэлектрикой или фотовольтаикой (англ. photovoltaic – PV).

В устройствах второго типа применяются зеркала или линзы, для того чтобы уловить солнечное излучение с больших площадей и сконцентрировать его на небольшой площади. При этом электрическая энергия производится, когда сконцентрированное солнечное излучение преобразуется в тепло, запускающее тепловой двигатель (паровую турбину), связанный с электрогенератором. Данная система носит название «концентрированная солнечная энергия» (англ. concentrated solar power – CSP), а производимая ею электроэнергия – «солнечным тепловым электричеством» (англ. solar thermal electricity – STE). Данные аббревиатуры зачастую используются как синонимы. В русском языке также используется термин «гелиотермальная электроэнергетика».

Существует также и «гибридная» система производства солнечного электричества, называемая «концентрированной фотоэлектрикой» (англ. concentrated photovoltaics – CPV). В ней также используются зеркала и линзы, но для фокусирования, концентрации солнечного излучения в высокомощных фотоэлектрических элементах (англ. multi-junction solar cells).

Фотоэффект

Фотоэлектрический эффект, или фотоэффект, благодаря которому световая энергия преобразуется в электрическую, был открыт еще в 1839 г. французским физиком Александром Беккерелем, а в 1905 г. объяснен Альбертом Эйнштейном, который в 1921 г. получил Нобелевскую премию именно за теорию фотоэлектрического эффекта. В 1954 г. американские исследователи разработали солнечный элемент на основе кремния, позволяющий преобразовывать солнечный свет в электричество с 6 %-ной эффективностью[43]. На основе данной разработки в 1955 г. была создана первая солнечная батарея. С конца 50-х гг. прошлого столетия солнечные батареи использовались в космической отрасли, пока наконец не стали доступными для применения и в других сферах.

В развитии технологий солнечной энергетики самое деятельное участие принимали и российские ученые, в частности упомянутый выше академик Алферов получил премию «Чистая энергия» за «фундаментальные исследования и значительный практический вклад в создание полупроводниковых преобразователей энергии, применяемых в солнечной и электроэнергетике».

Львиную долю мирового рынка фотоэлектрики, примерно 90 %, занимают сегодня солнечные модули на основе кристаллического кремния. Около 10 % приходится на тонкопленочные технологии разных видов, а на быстрорастущий сегмент концентрированной фотоэлектрики (CPV) пока менее 1 %.

Интригой дальнейшего развития солнечной энергетики является эффективность солнечных (фотоэлектрических) модулей и динамика их стоимости, а также прогресс в производстве иных составляющих солнечных электростанций. В принципе, солнечная энергетика бурно растет уже и при нынешнем уровне производительности модулей, а дальнейший рост эффективности приведет к еще большему повышению ее конкурентоспособности на энергетическом рынке. При этом очевидно, что эффективности есть куда расти. Чуть ли не ежемесячно приходят новости об очередном технологическом прорыве в том или ином исследовательском центре, позволяющем добиться повышения эффективности разных типов модулей.

В настоящее время в лабораторных условиях установлены следующие рекорды эффективности солнечных ячеек: 25 % – для монокристаллических (sc-Si), 20,4 % – для поликристаллических (mc-Si). В сфере тонкопленочной технологии лучшие результаты составляют 19,8 % для пленок на основе диселенида меди индия галлия (CIGS) и 21 % для пленок на основе теллурида кадмия (CdTe)[44]. Последний из указанных типов модулей имеет, по-видимому, все шансы потеснить кремниевые технологии в связи с ростом эффективности, сочетающимся с меньшей энергоемкостью и низкими удельными затратами на производство 1 Вт.

За последнее десятилетие средняя эффективность находящихся в продаже модулей на основе кристаллического кремния увеличилась с 12 до 16 %, а лучшие коммерческие модели имеют эффективность 21 %. У тонкопленочных модулей (CdTe) за то же десятилетие средняя эффективность выросла с 9 до 13 %, а рекордный показатель составляет 17 %[45].

Перейти на страницу:

Похожие книги

Лизинг
Лизинг

В учебном пособии читатель познакомится с ранее не освещавшейся в литературе цикличностью развития лизинга в США, Германии, Великобритании, Японии, Италии, Франции, России; с пропорциями в финансировании лизинга и его левериджем; с теорией и практикой секьюритизации лизинговых активов; с формированием стоимости лизинговых контрактов; с механизмом уступки денежных прав по дебиторской задолженности; с эмиссией ценных бумаг лизингодателей; с требованиями к структурированию сделок; с разработанной автором системой неравенств, регулирующей секьюритизацию лизинговых активов и ценообразование этих сделок; с зарубежным и отечественным опытом секьюритизации лизинговых активов; с целесообразностью применения оперативного лизинга, который еще называют истинным и сервисным лизингом; с доказательствами автора на слушаниях в Госдуме в 2011 г. о пользе бюджету государства от лизинга. Автор также дает ответ на вопрос, продолжится ли рост лизинговой индустрии в России и при каких обстоятельствах.В книге содержится обширный статистический материал, собранный автором в течение многолетней исследовательской работы, приводится наиболее полная информация о лизинге в России за 1992–2010 гг., в том числе данные по 420 лизингодателям, информация о 72 сделках секьюритизации лизинговых активов в Италии и аналогичные материалы по другим странам.Предлагаемое пособие нацелено на оказание помощи при изучении студентами и магистрами высших учебных заведений курсов: «Финансовый лизинг и факторинг»; «Инновации на финансовых рынках»; «Мировые финансовые рынки»; «Теория финансовых кризисов»; «Экономика финансового посредничества»; «Финансовый менеджмент»; «Финансовая инженерия»; «Банковский менеджмент»; «Инвестиционная деятельность банка»; «Управление реальными инвестициями» и др.Книга может быть полезна для научных и практических целей предприятиям, организациям, банкам, лизинговым компаниям, формирующим стратегию развития, привлечения средств для финансирования инвестиционных проектов.

Виктор Давидович Газман

Экономика
Сталин. Человек, который спас капитализм
Сталин. Человек, который спас капитализм

Заголовок глубокого и блестящего исследования Льюиса Каштана, звучащий несколько провокационно, может заставить подозревать автора в стремлении привлечь внимание читателя любой ценой. Однако в действительности автор отнюдь не склонен к дешевым спецэффектам — для него несомненна роль Сталина как важнейшего фактора усиления и широкого распространения рыночной экономики. Деятельность знаменитого диктатора, считает он, навсегда изменила формы капитализма и методы их реализации, что в свою очередь привело к невероятному и невиданному процветанию США и части остального мира. В своей книге Льюис Каплан показывает механизмы политических и экономических решений руководства США во второй половине XX века. Пружинами, приводящими в действие американскую государственную машину, оказываются ответы на поступки Иосифа Сталина. Как следует из рассуждений Каплана, даже после смерти Сталина США продолжали бороться с тем образом будущего, который родился у него в голове. В качестве главной движущей силы истории автор рассматривает экономические интересы целых стран и отдельных людей — сливаясь и пересекаясь между собой, они создают течения и водовороты глобальной политики.

Льюис Е. Каплан

Экономика / Публицистика / История / Образование и наука / Документальное