Читаем Мистерия Луны полностью

4. Повернитесь на север и поместите одну пятку напротив колышка В. Теперь отсчитайте четыре шага от пятки до носка на север и воткните в землю третий колышек (С) перед носком ноги.

5. При наблюдении из пункта А расстояние между колышками В и С будет составлять 1/366 часть горизонта.



Теперь надо изготовить обвязанную деревянную раму, как показано на рис. 14 и 15. Ширина рамы должна быть равна промежутку между колышками В и С. Далее раму нужно установить на шестах таким образом, чтобы она находилась на значительной высоте и могла изменять угол наклона.

Цель этого действия заключается в том, что угол равно можно совместить с угловым положением Венеры, когда она начинает заходить за горизонт.

Стоя в точке А, нужно наблюдать за прохождением Венеры через промежуток в деревянной раме, одновременно раскачивая маятник и подсчитывая общее количество колебаний за тот период, пока Венера проходит через этот промежуток. Длина маятника, совершающего 366 колебаний за этот период, равна 1/2 мегалитического ярда (41,48 см). Умножив это значение на 2, мы получаем полный мегалитический ярд, или 82,966 см.

Таким образом, значение мегалитического ярда можно воспроизвести в любом месте, где можно наблюдать за движением Венеры в соответствующей части ее цикла. Что касается использования деревянной рамы, мы благодарны за подсказку Арчи Рою, профессору астрономии в университете Глазго.

Хотя маятники немного различаются из-за незначительных вариаций тяготения по широте и высоте, опыт показал, что вычисление мегалитического ярда с использованием этого метода справедливо для всей территории, где находятся монументы, изученные Александром Томом, от Оркнейских островов на севере до Бретани на юге.


Приложение 2

ИСПОЛЬЗОВАНИЕ ШУМЕРСКОГО МАЯТНИКА

Метод, применявшийся шумерами для вычисления двойного куша, их основной меры длины, следовал тем же общим правилам, которыми пользовались народы эпохи мегалитов в Западной Европе; единственное различие заключалось в системе счисления.

Как и мы, шумеры делили окружность на 360°, поэтому исходным пунктом их расчетов было разделение горизонта на 360 равных частей. Математический трюк, использованный для упрощения этой процедуры и описанный в приложении 1, непригоден в данном случае. Возможно, шумеры изобрели собственный метод ускорения первичной процедуры, но в любом случае они пользовались орудиями из металла, и поэтому у них не было необходимости часто повторять процедуру определения линейной единицы длины. Они могли создать достаточно точный эталон и снять с него большое количество копий. Вычисление у360 окружности горизонта методом проб и ошибок требовало времени, но его вполне возможно было произвести с большой степенью точности.

Далее следовали процедуры, описанные в предыдущем приложении. Проем в деревянной раме соответствовал у360 горизонта, но наблюдение за Венерой осуществлялось точно так же. Требуемое количество колебаний маятника в данном случае составляет 240, что соответствует 240 секундам – периоду времени, который шумеры называли «геш». Длина маятника, совершающего 240 колебаний за период прохождения Венеры через деревянную раму, составляет 99,88 см, что соответствует высоте статуй правителя Гудеа из Лагаша, обнаруженных в Ираке. Эта единица длины была известна шумерам как «двойной куш».

Следует отметить, что описываемый маятник, строго говоря, не являлся секундным маятником того рода, какой обычно использовался в XVII—XIX вв. Поскольку наблюдение велось за Венерой, которая движется независимым образом на фоне звезд, время каждого колебания маятника было немного больше 1 секунды (1,002 секунды). Это является косвенным доказательством того, что шумеры пользовались этой системой для определения своей линейной единицы длины. Они хорошо понимали, что день состоит из 43 200 секунд (для нас это количество вдвое больше, потому что наши сутки состоят из 24 часов, тогда как шумерский «день» состоял из 12 часов). Но совершенно надежного способа определения продолжительности секунды, наблюдая за небом и раскачивая маятник, не существует. Этого можно достичь лишь при наблюдении за усредненным движением Солнца по тому же способу, который мы использовали для Венеры. Однако из-за собственных орбитальных характеристик Земли кажется, что Солнце движется по небосводу с постоянной скоростью. В году есть лишь несколько дней, когда эксперимент наблюдения Солнца работает успешно, и шумеры не могли знать, какие дни являются подходящими. Кроме того, наблюдать за движением Солнца гораздо труднее и потенциально опаснее.

Перейти на страницу:

Похожие книги

Физика для всех. Движение. Теплота
Физика для всех. Движение. Теплота

Авторы этой книги – лауреат Ленинской и Нобелевской премий академик Л.Д. Ландау и профессор А.И. Китайгородский – в доступной форме излагают начала общего курса физики. Примечательно, что вопросы атомного строения вещества, теория лунных приливов, теория ударных волн, теория жидкого гелия и другие подобные вопросы изложены вместе с классическими разделами механики и теплоты. Подобная тесная связь актуальных проблем физики с ее классическими понятиями, их взаимная обусловленность и неизбежные противоречия, выводящие за рамки классических понятий, – все это составляет сущность современного подхода к изучению физики. Новое, свежее изложение делает книгу полезной для самого широкого круга читателей.

Александр Исаакович Китайгородский , Лев Давидович Ландау

Научная литература / Физика / Технические науки / Учебники / Образование и наука
Складки на ткани пространства-времени. Эйнштейн, гравитационные волны и будущее астрономии
Складки на ткани пространства-времени. Эйнштейн, гравитационные волны и будущее астрономии

Гравитационные волны были предсказаны еще Эйнштейном, но обнаружить их удалось совсем недавно. В отдаленной области Вселенной коллапсировали и слились две черные дыры. Проделав путь, превышающий 1 миллиард световых лет, в сентябре 2015 года они достигли Земли. Два гигантских детектора LIGO зарегистрировали мельчайшую дрожь. Момент первой регистрации гравитационных волн признан сегодня научным прорывом века, открывшим ученым новое понимание процессов, лежавших в основе формирования Вселенной. Книга Говерта Шиллинга – захватывающее повествование о том, как ученые всего мира пытались зафиксировать эту неуловимую рябь космоса: десятилетия исследований, перипетии судеб ученых и проектов, провалы и победы. Автор описывает на первый взгляд фантастические технологии, позволяющие обнаружить гравитационные волны, вызванные столкновением черных дыр далеко за пределами нашей Галактики. Доступным языком объясняя такие понятия, как «общая теория относительности», «нейтронные звезды», «взрывы сверхновых», «черные дыры», «темная энергия», «Большой взрыв» и многие другие, Шиллинг постепенно подводит читателя к пониманию явлений, положивших начало эре гравитационно-волновой астрономии, и рассказывает о ближайшем будущем науки, которая только готовится открыть многие тайны Вселенной.

Говерт Шиллинг

Научная литература / Прочая научная литература / Образование и наука
100 великих замков
100 великих замков

Великие крепости и замки всегда будут привлекать всех, кто хочет своими глазами увидеть лучшие творения человечества. Московский Кремль, новгородский Детинец, Лондонский Тауэр, афинский Акрополь, мавританская крепость Альгамбра, Пражский Град, город-крепость Дубровник, Шильонский замок, каирская Цитадель принадлежат прекрасному и вечному. «У камня долгая память», – говорит болгарская пословица. И поэтому снова возвращаются к памятникам прошлого историки и поэты, художники и путешественники.Новая книга из серии «100 великих» рассказывает о наиболее выдающихся замках мира и связанных с ними ярких и драматичных событиях, о людях, что строили их и разрушали, любили и ненавидели, творили и мечтали.

Надежда Алексеевна Ионина

История / Научная литература / Энциклопедии / Прочая научная литература / Образование и наука