Читаем Мивары: 25 лет создания искусственного интеллекта полностью

<p>1.4. Познающе-диагностические автоматизированные информационные системы и сложные предметные области</p>

Для определения предельных требований к автоматизированным системам необходимо описать максимально сложные условия для их применения. Как известно, выделяют классы познавательных и диагностических автоматизированных систем обработки информации (АСОИ) [72]. Основной задачей познавательных систем является изучение новой сложной предметной области без существенных ограничений по времени работы. Задачей диагностических систем является другая крайность – в минимальное время принимать решения в динамической формализованной области. Представляется, что наиболее сложным случаем является сочетание этих двух систем, когда на неизвестной исследуемой предметной области надо распознавать ее состояние и принимать решения в минимальное время. Такие познающе-диагностические АСОИ являются наиболее сложными, и в них отрабатываются новые подходы, модели, методы и алгоритмы. Практически все реальные сложные проблемы менеджмента относятся именно к познающе-диагностическим задачам.

Таким образом, для обоснованной классификации управленческих АСОИ целесообразно сформулировать наиболее важные условия и категории сложности различных предметных областей. Все управленческие АСОИ и программы можно будет разбить на классы решаемых задач по соответствующей сложности. Тогда, все разнообразные пользователи смогут обоснованно выбирать для себя наиболее подходящие конкретные АСОИ. С научной точки зрения, наибольший интерес представляют именно максимальные условия сложности предметной области. Ведь если некоторая АСОИ создана для максимально сложного случая, то она сможет решать и более простые задачи даже в упрощенном варианте самой АСОИ.

Кроме того, исследуя максимально сложные случаи, можно определить и предельные возможности современных АСОИ, выявить основные научные проблемы и приступить к их целенаправленному решению. Насколько нам известно, наиболее сложными считаются следующие условия для системы управления:

1) сложный, большой, разнообразный, изменяющийся и развивающийся объект управления, когда принципиально нельзя сделать его полную информационную модель;

2) объективное наличие и сильное влияние фактора случайности событий, их непредсказуемости;

3) агрессивная внешняя среда с частыми, неожиданными и очень быстрыми изменениями (нельзя применять только статистические модели);

4) ограниченные внешние и внутренние ресурсы, которых заведомо не хватает для всех, что и порождает конфликты и конкуренцию;

5) наличие не менее интеллектуальных и не менее сильных объектов-противников или конкурентов (обман и комбинации);

6) проблемы со своевременностью получения и передачи сигналов управления: длительные задержки при передаче сигналов управления и получения сигналов с датчиков (в пределе – счет идет на секунды);

7) проблемы с полнотой требуемых исходных данных (не все данные в наличии, более того, реально все данные невозможно получить никогда);

8) проблемы с достоверностью получаемых исходных данных, т.е. неправильные или ошибочные данные по разным причинам;

9) важность и сложность принимаемых решений ("ценою в жизнь").

Возможно, это еще не все условия, и данная проблема требует отдельного изучения. Важно, что в таких случаях принципиально нельзя создать идеальную систему управления (не хватает либо ресурсов, либо времени, либо чего-то еще). Как правило, существует несколько вариантов создания таких систем управления, из которых надо выбрать оптимальный. Принципиально, что на выходе получают квазиоптимальную систему, а так как внешняя среда и противники постоянно изменяются, то и эта система должна быть открытой и эволюционной. Важно еще и то, что, когда некие действия уже начались, у менеджеров не будет времени на раздумывания и создание новых планов действий, а остается только выбрать какой-то один заранее разработанный план и реализовывать его, осознавая всю ответственность и, возможно, немного модернизируя и уточняя его.

Отметим, что для таких сверхсложных систем существующие традиционные базы данных и простейшие экспертные системы не могут быть адекватными. Именно для таких максимально сложных случаев и разрабатывались новые перспективные миварные базы данных и правил и миварное информационное пространство [46-126, 303, 354-355, 503-504]. Миварные базы данных и правил разработаны именно для познающе-диагностических систем реального времени. Отметим, что в миварном информационном пространстве возможно одновременное моделирование в реальном времени нескольких информационных моделей, сопоставление их результатов и разработка различных прогнозов. Это вполне соответствует современным направлениям: сервисно-ориентированные архитектуры, "облачные" вычисления, многоагентные системы – хотя все это разрабатывалось в миварах независимо и параллельно.

<p>1.5. Обзор технологий ИИ и сравнение с миварным подходом</p>
Перейти на страницу:

Похожие книги

1С: Управление небольшой фирмой 8.2 с нуля. 100 уроков для начинающих
1С: Управление небольшой фирмой 8.2 с нуля. 100 уроков для начинающих

Книга предоставляет полное описание приемов и методов работы с программой "1С:Управление небольшой фирмой 8.2". Показано, как автоматизировать управленческий учет всех основных операций, а также автоматизировать процессы организационного характера (маркетинг, построение кадровой политики и др.). Описано, как вводить исходные данные, заполнять справочники и каталоги, работать с первичными документами, формировать разнообразные отчеты, выводить данные на печать. Материал подан в виде тематических уроков, в которых рассмотрены все основные аспекты деятельности современного предприятия. Каждый урок содержит подробное описание рассматриваемой темы с детальным разбором и иллюстрированием всех этапов. Все приведенные в книге примеры и рекомендации основаны на реальных фактах и имеют практическое подтверждение.

Алексей Анатольевич Гладкий

Экономика / Программное обеспечение / Прочая компьютерная литература / Прочая справочная литература / Книги по IT / Словари и Энциклопедии