Очевидно, что это еще не произошло и, согласно наблюдениям, не происходило. Сам Эйнштейн знал, что должно быть что-то, что этому препятствует, и поэтому - либо в гениальном порыве, либо в отчаянии, чтобы спасти свою теорию - Эйнштейн ввел новый термин в свои уравнения: космологическая постоянная. Эта космологическая постоянная не была стандартной формой энергии, как материя и излучение, которые состоят из частиц и могут либо распространяться, либо уплотняться под воздействием сил, но скорее космологическая постоянная была формой энергии, которая была присуща самому пространству и всегда выталкивалась наружу: действуя как чистый импульс, отталкивающий объекты внутри пространства друг от друга. Эйнштейн рассуждал, что только путем противодействия внутреннему притяжению гравитации к материи и излучению с помощью внешнего "толчка" космологической постоянной можно достичь статической Вселенной, поскольку должно быть достигнуто некое состояние "равновесия". Но в следующем десятилетии 1920-х годов как теоретические, так и наблюдательные соображения показали, что эта линия мышления Эйнштейна не может быть правильной. Фактически, многие критиковали введение Эйнштейном космологической постоянной для этой цели по одной важной причине: это было концептуальное решение, но в деталях оно было нестабильным. Если бы ваша Вселенная имела какие-либо крошечные несовершенства или неоднородности внутри нее вообще, такие как звезды, планеты или Эйнштейны, она не могла бы оставаться сбалансированной, и ее части были бы обречены на коллапс, в то время как другие были бы вынуждены расширяться. Фреска с уравнениями поля Эйнштейна с иллюстрацией света, изгибающегося вокруг затменного Солнца: ключевые наблюдения, которые впервые подтвердили общую теорию относительности через четыре года после того, как она была впервые теоретически выдвинута: еще в 1919 году.
Тензор Эйнштейна показан разложенным слева на тензор Риччи и скаляр Риччи, с добавленным после этого членом космологической постоянной. Если бы эта константа не была включена, то неизбежным следствием стала бы расширяющаяся (или коллапсирующая) Вселенная.
Первая революция была теоретической и началась с Александра Фридмана в 1922 году. Работая с уравнениями поля Эйнштейна, Фридман стал первым человеком, который показал, как Вселенная, равномерно заполненная: материей, излучением, космологической постоянной, и/или любой другой формой энергии, которую вы можете записать, будет развиваться со временем. Во-первых, примечательно отметить, что такая Вселенная будет или должна развиваться со временем; это явно не соответствует тому, что мы наблюдаем. Тем не менее, Фридман не только упорствовал, но и зашел так далеко, что показал, как именно будет развиваться такая Вселенная и какие факторы будут определять ее будущую эволюцию. То, что обнаружил Фридман, было примечательным: набор уравнений, которые связывали, с одной стороны, общее количество материи и энергии, присутствующих с одной стороны, со скоростью, с которой будет меняться расстояние между любыми двумя произвольными точками в пространстве. Я повторю это еще раз немного по-другому, чтобы вы поняли, насколько это важно: если у вас есть материя и/или энергия, присутствующие во Вселенной и равномерно распределенные по ней, то расстояние между любыми двумя точками в пространстве будет меняться со временем, и скорость, с которой это расстояние меняется, напрямую определяется общей плотностью материи и энергии. Другими словами, пространство не может быть статичным в однородно заполненной Вселенной, как изначально придумал Эйнштейн.