Читаем Models of the Mind полностью

В отличие от сетей Хопфилда, кольцевые сети хорошо описываются их названием: они состоят из нескольких нейронов, расположенных кольцом, причем каждый нейрон соединяется только с теми, которые находятся рядом с ним. Как и у сетей Хопфилда, у этих моделей есть состояния аттрактора - паттерны активности, которые являются самоподдерживающимися и могут представлять собой воспоминания. Но состояния аттракторов в кольцевой модели отличаются от состояний аттракторов в сети Хопфилда. Аттракторы в модели Хопфилда дискретны. Это означает, что каждое состояние аттрактора - то, которое относится к вашей детской спальне, то, которое относится к вашему детскому отпуску, то, которое относится к вашей нынешней спальне, - полностью изолировано от остальных. Не существует плавного перехода между этими разными воспоминаниями, независимо от того, насколько они похожи; вам придется полностью покинуть одно состояние аттрактора, чтобы попасть в другое. Аттракторы в кольцевой сети, напротив, непрерывны. С непрерывными аттракторами переход между похожимивоспоминаниями очень прост. Модели с непрерывными состояниями аттракторов скорее напоминают желоб дорожки для боулинга: попав в желоб, шар не может легко из него выбраться, но может плавно перемещаться внутри него.

Сети с непрерывными состояниями аттракторов, подобные кольцевой модели, полезны по целому ряду причин, и главная из них - тип ошибок, которые они допускают. Может показаться глупым хвалить систему памяти за ее ошибки - разве мы не предпочли бы вообще не иметь ошибок? - Но если мы предположим, что ни одна сеть не может обладать идеальной памятью, то качество ошибок становится очень важным. Кольцевая сеть допускает небольшие, разумные ошибки.

Рассмотрим пример теста на рабочую память, в котором испытуемые должны были запомнить цвет фигур на экране. Цвета хорошо отображаются в кольцевых сетях, потому что, как вы помните из уроков рисования, цвета располагаются на колесе. Итак, представьте себе сеть нейронов, расположенных в виде кольца, где каждый нейрон представляет немного другой цвет. На одной стороне кольца находятся нейроны, представляющие красный цвет, рядом с ними - оранжевые, затем желтые и зеленые; так мы доходим до стороны, противоположной красному, где находятся нейроны, представляющие синий цвет, которые ведут к фиолетовым и снова к красному.

В этой задаче при виде фигуры возникает активность в нейронах, представляющих ее цвет, в то время как другие нейроны молчат. В результате на кольце образуется небольшой "бугорок" активности, сосредоточенный на запомненном цвете. Если в то время, когда человек пытается удержать в памяти этот цвет, поступают какие-либо отвлекающие сигналы - например, от других случайных объектов в комнате, - они могут оттолкнуть или отодвинуть бугорок активности от желаемого цвета. Но - и это решающий- он сможет сдвинуть его только в очень близкое место на кольце. Так красный может стать красно-оранжевым или зеленый - тиловым. Но память красного цвета вряд ли станет зеленым. Или, если уж на то пошло, вообще не станет никаким цветом; где-то на кольце всегда будет неровность. Все эти свойства являются прямым следствием желобообразной природы непрерывного аттрактора - он обладает низким сопротивлением при переходе между близкими состояниями, но высоким сопротивлением при других возмущениях.

Еще одно преимущество кольцевой сети заключается в том, что ее можно использовать для выполнения различных действий. Слово "рабочая" в рабочей памяти призвано опровергнуть мнение о том, что память - это просто пассивное хранение информации. Напротив, хранение идей в рабочей памяти позволяет нам комбинировать их с другой информацией и приходить к новым выводам. Отличным примером этого является система направления головы у крыс, которая также послужила вдохновением для ранних моделей кольцевых сетей.

У крыс (как и у многих других животных) есть внутренний компас: набор нейронов, которые постоянно отслеживают направление, в котором находится животное. Если животное поворачивается лицом к новому направлению, активность этих клеток меняется, отражая это изменение. Даже если крыса сидит неподвижно в тихой затемненной комнате, эти нейроны продолжают работать, сохраняя информацию о направлении движения. В 1995 году группа специалистов из лаборатории Брюса Макнотона в Университете Аризоны и отдельно Кечен Чжан из Калифорнийского университета в Сан-Диего предположили, что этот набор клеток может быть хорошо описан кольцевой сетью. Направление - одно из тех понятий, которые хорошо отображаются в круге, и бугорок активности на кольце будет использоваться для хранения направления, в котором находится животное (см. рис. 11).

Перейти на страницу:

Похожие книги

Мозг и разум в эпоху виртуальной реальности
Мозг и разум в эпоху виртуальной реальности

Со Ёсон – южнокорейский ученый, доктор наук, специалист в области изучения немецкого языка и литературы, главный редактор издательства Корейского общества Бертольда Брехта, исследующий связи различных дисциплин от театрального искусства до нейробиологии.Легко ли поверить, что Аристотель и научно-фантастический фильм «Матрица» проходят красной нитью через современную науку о мозге и философию Спинозы, объясняя взаимоотношения мозга и разума?Как же связаны между собой головной мозг, который называют колыбелью сознания, и разум, на который как раз и направлена деятельность сознания?Можно ли феномен разума, который считается решающим фактором человеческого развития, отличает людей от животных, объяснить только электрохимической активностью нейронов в головном мозге?Эта книга посвящена рассмотрению подобных фундаментальных вопросов и объединяет несколько научных дисциплин, которые развились в ходе напряженных споров о соотношении материи и разума, которые берут своё начало с древних времен и продолжаются по сей день. Данная работа не является простым цитированием ранее написанных исследований, направленным на защиту своей позиции, она подчеркивает необходимость появления нового исследования мозга, которое должно будет вобрать в себя как философские умозаключения, так и научную доказательную базу.В формате PDF A4 сохранен издательский макет.

Со Ёсон

Биология, биофизика, биохимия
Расширенный фенотип
Расширенный фенотип

«Расширенный фенотип» – одна из лучших книг известного учёного и видного популяризатора науки Ричарда Докинза. Сам автор так сказал про неё в предисловии ко второму изданию: «Думаю, что у большинства учёных – большинства авторов – есть какая-то одна публикация, про которую они говорили бы так: не страшно, если вы никогда не читали моих трудов кроме "этого", но "этот" пожалуйста прочтите. Для меня таким трудом является "Расширенный фенотип"». Помимо изложения интересной научной доктрины, а также весьма широкого обзора трудов других исследователей-эволюционистов, книга важна своей глубоко материалистической философской и мировоззренческой позицией, справедливо отмеченной и высоко оцененной в послесловии профессионального философа Даниэла Деннета.

Ричард Докинз

Биология, биофизика, биохимия