Читаем Models of the Mind полностью

Как и подходы, основанные на подборе шаблонов, которые появились до них, конволюционные нейронные сети нашли применение в реальном мире. В 1997 году эти сети стали основной частью программного обеспечения, разработанного компанией AT&T для автоматизации обработки чеков в банках Америки. К 2000 году, по оценкам, от 10 до 20 процентов чеков в Америке обрабатывались с помощью этого программного обеспечения. Очаровательный пример того, как наука исполняет свое предназначение, - мечта Голдберга об оснащении банков синтетическими визуальными системами сбылась спустя 70 лет после изобретения микрофильмирующей машины

Метод обучения сверточных нейронных сетей требователен к данным, и модель может быть настолько хороша, насколько хороша та информация, которая в нее поступает. Поэтому не менее важно получить правильную модель, чем правильные данные. Именно поэтому так важно было собрать реальные образцы реальных цифр, написанных реальными людьми. Исследователи Bell Lab могли бы поступить так же, как Фукусима, и создать компьютерные изображения цифр. Но они вряд ли смогли бы передать все разнообразие, нюансы и небрежность написания цифр в реальной жизни. Письма, прошедшие через почтовое отделение в Буффало, содержали около 10 000 примеров настоящего, человеческого почерка, что дало модели все необходимое для настоящего обучения. Убедившись в важности реальных данных, компьютерщики стали собирать их еще больше. Вскоре после набора Buffalo был собран набор данных, содержащий в шесть раз больше цифр и названный MNIST. Удивительно, но этот набор данных по-прежнему остается одним из наиболее часто используемых для быстрого тестирования новых моделей и алгоритмов искусственного зрения. Цифры для MNIST были написаны школьниками из Мэриленда и участниками переписи населения США. И хотя авторам было сказано, для чего используются их цифры в данном случае, они почти наверняка не ожидали, что их почерк будет использоваться компьютерными учеными спустя 30 лет.

Испытания конволюционных нейронных сетей не остановились на цифрах, но при переходе к более сложным изображениям они столкнулись с трудностями. В начале 2000-х годов сети, подобные сетям ЛеКуна, были обучены на другом наборе данных из 60 000 изображений, на этот раз состоящих из объектов. Изображения были маленькими и зернистыми - всего 32x32 пикселя - и могли представлять собой самолеты, автомобили, птиц, кошек, оленей, собак, лягушек, лошадей, корабли или грузовики. Хотя для нас эта задача оставалась простой, для сетей она серьезно усложнилась. Вся неоднозначность, присущая распознаванию трехмерного мира на основе двухмерных данных, проявляется, когда используются реальные изображения реальных объектов. Те же модели, которые научились распознавать цифры, с трудом справлялись с этими более реалистичными изображениями. Этот подход к искусственному зрению, похожий на мозговой, не справлялся с базовой визуальной обработкой, которую мозг выполняет каждый день.

Однако в 2012 году ситуация изменилась, когда Алекс Крижевский, Илья Суцкевер и Джеффри Хинтон из Университета Торонто с помощью конволюционной нейронной сети победили в крупном конкурсе по распознаванию изображений ImageNet Large Scale Visual Recognition Challenge. Конкурс заключался в маркировке изображений - больших (224x224 пикселя), реальных фотографий, сделанных людьми по всему миру и взятых с таких сайтов, как Flickr, - на предмет их принадлежности к одной из тысячи возможных категорий объектов. В этом очень убедительном тесте на визуальные способности конволюционная нейронная сеть дала 62 процента правильных ответов, опередив алгоритм, занявший второе место, на 10 процентных пунктов.

Как команда из Торонто добилась таких успехов? Они открыли новые вычисления, необходимые для зрения? Нашли ли они волшебную технику, помогающую модели лучше изучать свои связи? Правда в данном случае гораздо банальнее. Разница между этой конволюционной нейронной сетью и теми, что были до нее, заключалась в основном в размере. Сеть команды из Торонто насчитывала в общей сложности более 650 000 искусственных нейронов - примерно в 80 раз больше, чем сеть ЛеКуна, распознающая цифры. Эта сеть была настолько велика, что потребовались некоторые хитроумные инженерные решения, чтобы поместить модель в память компьютерных чипов, которые использовались для ее работы. Модель была велика и в другом отношении. Все эти нейроны означали, что для обучения связей между ними требовалось гораздо больше данных. Модель обучалась на 1,2 миллионах помеченных изображений, собранных профессором информатики Фей-Фей Ли в рамках базы данных ImageNet.

Перейти на страницу:

Похожие книги

Мозг и разум в эпоху виртуальной реальности
Мозг и разум в эпоху виртуальной реальности

Со Ёсон – южнокорейский ученый, доктор наук, специалист в области изучения немецкого языка и литературы, главный редактор издательства Корейского общества Бертольда Брехта, исследующий связи различных дисциплин от театрального искусства до нейробиологии.Легко ли поверить, что Аристотель и научно-фантастический фильм «Матрица» проходят красной нитью через современную науку о мозге и философию Спинозы, объясняя взаимоотношения мозга и разума?Как же связаны между собой головной мозг, который называют колыбелью сознания, и разум, на который как раз и направлена деятельность сознания?Можно ли феномен разума, который считается решающим фактором человеческого развития, отличает людей от животных, объяснить только электрохимической активностью нейронов в головном мозге?Эта книга посвящена рассмотрению подобных фундаментальных вопросов и объединяет несколько научных дисциплин, которые развились в ходе напряженных споров о соотношении материи и разума, которые берут своё начало с древних времен и продолжаются по сей день. Данная работа не является простым цитированием ранее написанных исследований, направленным на защиту своей позиции, она подчеркивает необходимость появления нового исследования мозга, которое должно будет вобрать в себя как философские умозаключения, так и научную доказательную базу.В формате PDF A4 сохранен издательский макет.

Со Ёсон

Биология, биофизика, биохимия
Расширенный фенотип
Расширенный фенотип

«Расширенный фенотип» – одна из лучших книг известного учёного и видного популяризатора науки Ричарда Докинза. Сам автор так сказал про неё в предисловии ко второму изданию: «Думаю, что у большинства учёных – большинства авторов – есть какая-то одна публикация, про которую они говорили бы так: не страшно, если вы никогда не читали моих трудов кроме "этого", но "этот" пожалуйста прочтите. Для меня таким трудом является "Расширенный фенотип"». Помимо изложения интересной научной доктрины, а также весьма широкого обзора трудов других исследователей-эволюционистов, книга важна своей глубоко материалистической философской и мировоззренческой позицией, справедливо отмеченной и высоко оцененной в послесловии профессионального философа Даниэла Деннета.

Ричард Докинз

Биология, биофизика, биохимия