Читаем Монизм как принцип диалектической логики полностью

«Чистая математика имеет своим объектом пространственные формы и количественные отношения действительного мира, стало быть – весьма реальный материал. Тот факт, что этот материал принимает чрезвычайно абстрактную форму, может лишь слабо затушевать его происхождение из внешнего мира. Но чтобы быть в состоянии исследовать эти формы и отношения в чистом виде, необходимо совершенно отделить их от их содержания, оставить это последнее в стороне, как нечто безразличное»[146].

Или: «Безразличие количественных соотношений и пространственных форм объективной реальности по отношению к качественному содержанию представляет собой объективный факт, составляющий фундамент математики. Предмет математики составляют те формы и отношения действительности, которые объективно обладают такой степенью безразличия к содержанию, что могут быть от него полностью отвлечены и определены в общем виде с такой ясностью и точностью, с сохранением такого богатства связей, чтобы служить основанием для чисто логического развития теории»[147].

Это отвлечение и составляет условие монистического познания в математике.

Между тем, при отвлечении от качественного содержания реальных объектов их количественная определенность становится совершенно неопределенной, она как бы повисает в воздухе. Для того чтобы математические абстракции приобрели «ясность», «точность» и «богатство связей», которые действительно отличают математику, необходимо установить некоторые внутренние различия для «безразличного», внутренние отношения, которые именно математически сообщили бы количественным понятиям адекватную определенность.

Иными словами, если количественные понятия употребляются для измерения качественных объектов, то сама количественная область может быть «измерена» лишь собственным, внутренним масштабом. Этим единственным путем для математики оказывается путь анализа отношений количеств. Содержание математических абстракций определяется исключительно их отношением к другим таким же количественным абстракциям. Эти закономерные отношения и составляют внутренний, логический нерв математики, организующий количественные объекты во внутренне спаянную систему, во всех своих элементах поддерживающую самое себя.

Задача математики и состоит в том, чтобы изыскать такие средства, выработать такие абстракции, отношения которых внутренним образом описывали бы закономерности количественной области, т.е. установить различия, внутренние для количества как «безразличной» по отношению к содержанию явлений определенности, как гомогенной, чисто количественной предметной области.

В ее задачу, таким образом, не входит чисто рациональное, априорное выведение количеств из внутренней логики «чистого разума» (такое выведение совершенно невозможно), но изыскание средств рационального, логического, понятийного выражения эмпирически данных количественных определений, т.е. выработка системы абстракций, отношение которых позволяет раскрыть внутренние закономерности количественной области. Через эти отношения чистых количеств область количественных понятий приобретает собственный центр, собственный смысл, собственную логику и относительно самодовлеющее значение.

Для того, чтобы рассмотреть абстрагированное свойство само по себе, необходимо выявить его структуру, т.е. расчленить на внутренние для него элементы, отношение которых определит содержание данного свойства. За пределами данного свойства, отношения его элементы не могут иметь самостоятельного значения; значение их определяется содержанием данного свойства, следовательно – их взаимным отношением.

Поэтому абстрагирование составляет лишь первый шаг научного познания. Дальнейшее движение состоит в том, чтобы дать определение абстрактного свойства, отобразить его как внутренне определенный, внутренне конкретный объект. Так, например, если мы имеем сферу как абстрактный геометрический образ шарообразного физического тела, то определить, что такое сфера, взятая сама по себе, мы можем лишь через отношение внутренних для этого абстрактного геометрического образа элементов; таковыми являются радиус сферы, геодезические линии ее поверхности, точки в отношении к геодезическим линиям, т.е. «объекты», внутренне присущие данному абстрактному свойству. Закономерное отношение этих «объектов» даст вполне точное, соответствующее существу дела определение свойства, безразличного к качественной определенности. Понятно отсюда, что элементами или «частями» такого математического объекта не могут быть части физического тела, так как последнее качественно. Поэтому-то арифметика и не обязана давать нам сведения о «населении Соединенных Штатов», а геометрия – о строении физического пространства.

Перейти на страницу:

Похожие книги

MMIX - Год Быка
MMIX - Год Быка

Новое историко-психологическое и литературно-философское исследование символики главной книги Михаила Афанасьевича Булгакова позволило выявить, как минимум, пять сквозных слоев скрытого подтекста, не считая оригинальной историософской модели и девяти ключей-методов, зашифрованных Автором в Романе «Мастер и Маргарита».Выявленная взаимосвязь образов, сюжета, символики и идей Романа с книгами Нового Завета и историей рождения христианства настолько глубоки и масштабны, что речь фактически идёт о новом открытии Романа не только для литературоведения, но и для современной философии.Впервые исследование было опубликовано как электронная рукопись в блоге, «живом журнале»: http://oohoo.livejournal.com/, что определило особенности стиля книги.(с) Р.Романов, 2008-2009

Роман Романов , Роман Романович Романов

История / Литературоведение / Политика / Философия / Прочая научная литература / Психология
Основы философии (о теле, о человеке, о гражданине). Человеческая природа. О свободе и необходимости. Левиафан
Основы философии (о теле, о человеке, о гражданине). Человеческая природа. О свободе и необходимости. Левиафан

В книгу вошли одни из самых известных произведений английского философа Томаса Гоббса (1588-1679) – «Основы философии», «Человеческая природа», «О свободе и необходимости» и «Левиафан». Имя Томаса Гоббса занимает почетное место не только в ряду великих философских имен его эпохи – эпохи Бэкона, Декарта, Гассенди, Паскаля, Спинозы, Локка, Лейбница, но и в мировом историко-философском процессе.Философ-материалист Т. Гоббс – уникальное научное явление. Только то, что он сформулировал понятие верховенства права, делает его ученым мирового масштаба. Он стал основоположником политической философии, автором теорий общественного договора и государственного суверенитета – идей, которые в наши дни чрезвычайно актуальны и нуждаются в новом прочтении.

Томас Гоббс

Философия