Читаем Монизм как принцип диалектической логики полностью

Что же представляет собой это количественное значение? Очевидно, что значение количественной определенности объекта и сама эта количественная определенность – различные вещи. Количественное значение пространственной определенности представляет собой образ последней, вполне отделимый от нее, допускающий самостоятельное рассмотрение и преобразование, своеобразную, обособленную, специфическую предметность.

Где же происходит это уравнивание разнородного, обезличивание и лишение содержания совершенно определенных, различных вещей? Объяснения этому математика не дает, поскольку это уравнивание составляет ее предпосылку, о природе которой она не задумывается. Это парадоксальное основоположение о количественном тождестве качественно несопоставимых объектов математика просто берет за нечто само собой разумеющееся. Тем более не объясняет этой операции физика, которая рассматривает пространственную определенность тел, как способ существования определенного физического содержания, выражение состояния качественно определенных физических процессов. Не дают объяснения этому и общие философские положения о пространстве и материи, о количестве и качестве. Ведь для философии ясно, что «формы как таковой» не существует. Как абстракция такое допущение совершенно несостоятельно. Философски его можно признать правомерным лишь как реальный факт, но не как теоретическое допущение.

Идеалистическая интерпретация математики именно и состоит в признании того, что своеобразная природа математических объектов произвольно постулируется разумом, что математические понятия – это лишь фикции, которым ничего не соответствует в реальности, что сама математика есть лишь игра по определенным правилам, все варианты которой уже имплицитно даны в условиях, в силу чего положение о тождестве качественно различных по природе геометрических образов оказывается парадоксальным лишь для нашего созерцания, но не для самой математической теории, строящейся из знаковых элементов, лишенных содержательного смысла.

При каком же условии связь математических величин следует рассматривать как рациональную?

Это условие не может быть раскрыто при рассмотрении процесса познания с позиции созерцательной гносеологии, хотя, к сожалению, этой точки зрения придерживается большинство авторов, исследующих природу математического познания.

Существо этой позиции заключается в следующем. Предмет математики составляют реальные вещи, которые рассматриваются под углом зрения их пространственной определенности. Анализ этой определенности и, следовательно, приобретение математикой своего предмета осуществляется в условиях отвлечения от качественной природы объектов. Своеобразие математики – в ее абстрактности.

Поэтому математика рассматривается, в сущности, как абстрактная пространственная физика или пространственная типология. В противоположность физике, изучающей определенные пространственные тела, геометрия должна была бы рассматривать пространственное тело вообще, вещь, лишенную всякой конкретности. Но в этом случае остается непонятным подход математики к своему предмету: анализ пространственных форм в отвлечении от всякой материи. Какого бы уровня абстрактности ни достигала математика, мы все же никогда не получим на этом пути «формы как таковой», так как всякая форма (используя наиболее абстрактное теоретическое положение – философское) есть не что иное, как способ существования определенного содержания. Отбрасывая всякое содержание, математика необходимо должна отбросить вместе с ним и всяческую форму и стать наукой, совершенно беспредметной.

Математика исследует именно форму как таковую, в ее полной отделенности, отрешенности от содержания. Такое отделение невозможно даже в воображении, даже в абстракции. В этом смысле математика вообще не является естественной наукой. А ведь ее обоснование часто хотят искать в физике предметного мира. Но физика вопиет против приемов математики, физика соглашается с количественным измерением тел, но не с бестелесной размерностью.

Существует лишь одна область действительности, где пространственная форма тел, их количественная определенность практически существует сама по себе – это практическая деятельность человека по освоению количественной стороны мира. Именно в этой деятельности и заключена тайна парадоксов математики.

Абстрактность математических объектов в действительности опирается на практическую отделимость и отделенность количественной стороны вещи от самой вещи и на ее самостоятельное предметное существование в этой отделенности. Предмет геометрии составляет пространственная форма вещи, рассматриваемая как существующая вне самой вещи, практически, предметно, а не в воображении. Предмет математики есть «практически истинная абстракция».

Анализ этой специфической предметной области, резюмируя все вышесказанное, диктуется следующими соображениями.

Перейти на страницу:

Похожие книги

MMIX - Год Быка
MMIX - Год Быка

Новое историко-психологическое и литературно-философское исследование символики главной книги Михаила Афанасьевича Булгакова позволило выявить, как минимум, пять сквозных слоев скрытого подтекста, не считая оригинальной историософской модели и девяти ключей-методов, зашифрованных Автором в Романе «Мастер и Маргарита».Выявленная взаимосвязь образов, сюжета, символики и идей Романа с книгами Нового Завета и историей рождения христианства настолько глубоки и масштабны, что речь фактически идёт о новом открытии Романа не только для литературоведения, но и для современной философии.Впервые исследование было опубликовано как электронная рукопись в блоге, «живом журнале»: http://oohoo.livejournal.com/, что определило особенности стиля книги.(с) Р.Романов, 2008-2009

Роман Романов , Роман Романович Романов

История / Литературоведение / Политика / Философия / Прочая научная литература / Психология
Основы философии (о теле, о человеке, о гражданине). Человеческая природа. О свободе и необходимости. Левиафан
Основы философии (о теле, о человеке, о гражданине). Человеческая природа. О свободе и необходимости. Левиафан

В книгу вошли одни из самых известных произведений английского философа Томаса Гоббса (1588-1679) – «Основы философии», «Человеческая природа», «О свободе и необходимости» и «Левиафан». Имя Томаса Гоббса занимает почетное место не только в ряду великих философских имен его эпохи – эпохи Бэкона, Декарта, Гассенди, Паскаля, Спинозы, Локка, Лейбница, но и в мировом историко-философском процессе.Философ-материалист Т. Гоббс – уникальное научное явление. Только то, что он сформулировал понятие верховенства права, делает его ученым мирового масштаба. Он стал основоположником политической философии, автором теорий общественного договора и государственного суверенитета – идей, которые в наши дни чрезвычайно актуальны и нуждаются в новом прочтении.

Томас Гоббс

Философия