Для преодоления этих недостатков на солнечных электростанциях используются эффективные электрические аккумуляторы (на сегодняшний день это недостаточно решённая проблема), либо преобразуют в другие виды энергии, например, строят гидроаккумулирующие станции, которые занимают большую территорию, или концепцию водородной энергетики, которая недостаточно экономически эффективна. На сегодняшний день эта проблема просто решается созданием единых энергетических систем, которые перераспределяют вырабатываемую и потребляемую мощность. При промышленном производстве – необходимость дублирования солнечных ЭС маневренными ЭС сопоставимой мощности. Высокая стоимость конструкции, связанная с применением редких элементов (к примеру, индий и теллур). Необходимость периодической очистки отражающей поверхности от пыли. Нагрев атмосферы над электростанцией. Из-за теоретических ограничений в преобразовании спектра в полезную энергию (около 30 %) для фотоэлементов первого и второго поколения требуется использование больших площадей земли под электростанции. Например, для электростанции мощностью 1 ГВт это может быть несколько десятков квадратных километров (для сравнения, – гидроэнергетика, при таких же мощностях, выводит из пользования заметно большие участки земли), но строительство солнечных электростанций такой мощности может привести к изменению микроклимата в прилегающей местности и поэтому в основном устанавливаются фотоэлектрические станции мощностью 1–2 МВт недалеко от потребителя или даже индивидуальные и мобильные установки. Фотоэлектрические элементы на крупных солнечных электростанциях устанавливаются на высоте 1,8–2,5 метра, что позволяет использовать земли под электростанцией для сельскохозяйственных нужд, например, для выпаса скота. Проблема нахождения больших площадей земли под солнечные электростанции решается в случае применения солнечных аэростатных электростанций, пригодных как для наземного, так и для морского и для высотного базирования.
Поверхность фото панелей и зеркал (для тепло машинных ЭС) нужно очищать от пыли и других загрязнений. В случае крупных фотоэлектрических станций, при их площади в несколько квадратных километров это может вызвать затруднения, но применение отполированного стекла на современных солнечных батареях решает эту проблему.
Эффективность фотоэлектрических элементов падает при их нагреве (в основном это касается систем с концентраторами), поэтому возникает необходимость в установке систем охлаждения, обычно водяных. Также в фотоэлектрических преобразователях третьего и четвёртого поколений используют для охлаждения преобразование теплового излучения в излучение наиболее согласованное с поглощающим материалом фотоэлектрического элемента (так называемое up-conversion), что одновременно повышает КПД.
Через 30 лет эксплуатации эффективность фотоэлектрических элементов начинает снижаться. Отработавшие своё фотоэлементы, хотя и незначительная их часть, в основном специального назначения, содержат компонент (кадмий), который недопустимо выбрасывать на свалку. Нужно дополнительное расширение индустрии по их утилизации.
Глава 2. Основные виды солнечных батарей
Устройства для прямого преобразования световой или солнечной энергии в электроэнергию называются фотоэлементами (по-английски Photovoltaics (PV), от греческого photos – свет и названия единицы электродвижущей силы – вольт). Преобразование солнечного света в электричество происходит в фотоэлементах, изготовленных из полупроводникового материала, например, кремния, которые под воздействием солнечного света вырабатывают электрический ток. Солнечные фотоэлектрические системы просты в обращении, однако сами фотоэлементы содержат сложные полупроводниковые устройства, аналогичные используемым для производства интегральных схем. Совокупность таких элементов образует фотоэлектрическую панель, либо модуль. Фотоэлектрические модули, благодаря своим электрическим свойствам, вырабатывают постоянный ток. Фотоэлектрический метод преобразования солнечной энергии основан на особенностях взаимодействия полупроводниковых материалов со световым излучением. В фотоэлектрическом преобразователе свободные носители образуются в результате поглощения светового кванта полупроводником, разделение зарядов производится под действием электрического поля, возникающего внутри полупроводника. Главные преимущества фотоэлектрических установок заключается в том, что они не имеют движущихся частей, их конструкция очень проста, производство – технологично. К их недостаткам можно отнести разрушение полупроводникового материала от времени, зависимость эффективности работы системы от ее запыленности. Все это ограничивает срок службы фотоэлектрических преобразователей. В настоящее время в ведущих странах мира проводятся работы по эффективности и снижения стоимости фотоэлектрических преобразователей.