Отсюда видно, что борьба-победа и трудные задачи и решения их соответствуют друг другу по отношению к своему положению в ряду других функций. Среди этих функций меняют свое место только неузнанное прибытие и требование ложного героя, которое следует за боем (царевич выдает себя за повара, водовоз выдает себя за победителя), но предшествует трудным задачам (Иван дома поселяется у ремесленника, братья выдают себя за добытчиков). Далее, можно наблюдать, что ходы с трудными задачами чаще всего являются вторыми, повторными или же единственными ходами и лишь сравнительно очень редко — первыми. Если сказка состоит из двух ходов, то ходы с боем всегда предшествуют ходам с задачами. Отсюда вывод, что ход с Б-П есть типичный первый ход, а ход с трудными задачами — типичный второй или повторный. Каждый из них может существовать и отдельно, но соединение всегда происходит в названном порядке. Теоретически, конечно, возможно и обратное соединение, но в таких случаях мы всегда будем иметь механическое соединение двух сказок. 3. Сказки, включающие обе пары, дают следующую картину:[14]
Отсюда видно, что и здесь функции Б-П (бой-победа) предшествуют функциям 3-Р (задача-решение). Между ними стоит Ф (притязания ложного героя). Изученные три случая не дают материала для суждения о том, возможно ли при данной комбинации преследование. Во всех рассмотренных случаях оно отсутствует.
По-видимому, мы здесь имеем механическое соединение двух ходов, т. е. нарушение канона у малоискушенных рассказчиков. Это результат некоторого распада классической сказочной архитектоники.
4. Если подписать друг под другом все схемы, в которых нет ни борьбы во всех ее видах, ни трудных задач, то получится следующее:
Если сравнить схему этих сказок с предыдущими схемами, то видно, что и эти сказки не дают какого-либо специфического строения. Переменной схеме
подчиняются все сказки нашего материала, причем ходы с Б-П развиваются по верхнему ответвлению, ходы с З-Р по нижнему, ходы с обеими парами сперва по верхнему, а затем, не доходя до конца, по нижнему, а ходы без Б-П и без З-Р развиваются, минуя отличные для каждого хода элементы.
Некоторых оговорок требует положение функции Ф (притязания ложного героя). При развитии через функции боя и победы (верхняя схема) она стоит между неузнанным прибытием (X) и узнаванием (У), при развитии через мотив трудной задачи и ее решения (З-Р), показанном в нижнем ряду, она стоит перед функцией задавания трудных задач (перед 3). Положение этой функции по существу одинаково. Она замыкает верхний ряд или открывает нижний. Элиминируя повторяющиеся элементы и подписывая несовмещающиеся элементы один под другим, мы получим следующую итоговую схему:
Под этой схемой могут быть подписаны все сказки нашего материала (см. приложение III).
Какие же выводы дает эта схема? Во-первых, она подтверждает наш общий тезис о полном единообразии строения волшебных сказок. Отдельные мелкие колебания или отступления не нарушают устойчивую картину этой закономерности.
Этот главнейший общий вывод на первых порах никак не совмещается с нашими представлениями о богатстве и разнообразии волшебных сказок.