Тем не менее очень привлекательной выглядит возможность использования аналитических моделей на основе нейронных сетей. Основными преимуществами таких моделей являются построение на основе классифицированных данных о транзакциях (мошеннических и легальных) и их адаптивность с учетом появления информации о новых фактах мошенничества. К минусам следует отнести сложность построения, а также необходимость наличия моделей либо для каждого клиента/ТСП, либо для характерной группы клиентов/ТСП, поведение которых является достаточно типичным. Отдельно нужно строить модель мошенника либо модели для мошенничества различных типов.
Далее в данном разделе рассмотрим один из подходов к построению аналитической модели на основе нейронных сетей.
Задача, которую предстоит решить с использованием модели на основе нейронной сети, относится к распознаванию образов — следует проанализировать транзакцию и сделать вывод о ее принадлежности классу мошеннических, либо к классу легальных транзакций. Нейронные сети, используемые для распознавания, относятся к классу многослойных персептронов (рис. 4.4).
Обучение такой сети происходит следующим образом: каждой входной модели транзакции (вектору информационных признаков транзакции) ставится в соответствие целевое значение О, если транзакция легальная, и 1, если транзакция нелегальная (мошенническая). Вместе они составляют обучающую пару. Для обучения требуется несколько обучающих пар, обычно не меньше произведения количества нейронов в слоях сети. По входной модели транзакции вычисляется выход сети и сравнивается с соответствующим целевым значением. Разность между выходом сети и целевым значением используется для изменения весов дуг, связывающих нейроны в слоях. Эти изменения происходят в соответствии с некоторым алгоритмом, стремящимся минимизировать ошибку. Векторы информационных признаков из обучающей выборки последовательно подаются на вход сети, ошибки вычисляются и веса подстраиваются до тех пор, пока ошибка не достигнет заданного уровня. Следует отметить, что выходным значением может быть не 0 или 1, а, например, число в интервале от 0 до 1 включительно.
Этот процесс зависит от огромного числа факторов и далеко не всегда приводит к желаемому результату. Фактически используется метод проб и ошибок. Требуется опыт работы с нейронными сетями вообще и, в частности, с моделями транзакций, чтобы получить приемлемый результат.
В рассматриваемом подходе исходные признаки транзакции являются отправной точкой. На их основе получаются расширенные признаки транзакции, после чего формируются входные данные для нейронной сети — информационные признаки транзакции.
Относительно представленных в таблице 4.9 данных следует сделать ряд замечаний:
1. Множества мошеннических и легальных транзакций должны быть четко разделимыми, что является необходимым условием обучения нейронной сети.
2. Многие мошеннические транзакции могут быть выявлены только при анализе последовательности транзакций, только по одной сделать вывод о ее мошенническом характере часто бывает невозможно.
Из этого следует, что если множества легальных и мошеннических транзакций плохо разделимы, что встречается достаточно часто (мошеннические транзакции, например, в Интернете на I-Times или Blizzard для одного клиента могут быть вполне типичными для другого), то обучить сеть на полном наборе таких «неразделяемых» данных не получится. Именно поэтому создаются отдельные модели для каждого клиента или каждой карты/терминала, что позволяет учесть особенности транзакций по конкретной карте или конкретному терминалу.
Второе замечание приводит к необходимости расширения набора признаков, которые следует использовать для обучения нейронной сети. Пример набора таких расширенных, то есть не содержащихся непосредственно в данных текущей транзакции, признаков приведен в таблице 4.10.
Нейронная сеть работает с числовыми значениями, поэтому на ее вход необходимо подавать соответствующие величины. Исходные и расширенные признаки транзакции следует преобразовать в числа, которые будут являться входными значениями для нейронной сети. Вариантами преобразования признаков транзакции может быть такое, которое дает бинарные значения (например, вход сети «транзакция в банкомате» может принимать значения 1 или 0) или действительные числа (например, отношение общей суммы покупок в ТСП за сутки к среднемесячному суточному значению по карте данного клиента или карточного продукта).