Мы были ограничены электромагнитным излучением, отраженным и испускаемым астрономическими объектами. Мы не могли изучать обломки звезд или планет[155]
в наших лабораториях или полететь на такие объекты, чтобы исследовать ихНо все это постепенно меняется. У астрономов, проводящих исследования с Земли, теперь есть, по крайней мере для ближних объектов, экспериментальный инструмент: радиолокационная астрономия. Для нашего удобства мы можем выбрать частоту, поляризацию, полосу пропускания и длительность импульса, послать к ближайшему спутнику или планете коротковолновый радиоимпульс и изучить вернувшийся сигнал. Мы можем подождать, пока объект будет вращаться под лучом, и облучить какое-то другое место на его поверхности. Радиолокационная астрономия позволила сделать массу новых выводов о периодах вращения Венеры и Меркурия и связанных с ними проблемах приливной эволюции Солнечной системы, о кратерах Венеры, раздробленной поверхности Луны, возвышенностях Марса и размере и составе частиц в кольцах Сатурна. И радиолокационная астрономия только начинает развиваться. Мы все еще ограничены малыми высотами, а для изучения внешней Солнечной системы – полушариями, повернутыми к Солнцу. Но с новым покрытием радиотелескопа Аресибо Национального центра астрономии и ионосферы в Пуэрто-Рико мы сможем составить карту поверхности Венеры с разрешением 1 км – лучше, чем самое высокое разрешение фотографий лунной поверхности, отснятых с Земли, – и получить много новой информации об астероидах, Галилеевых спутниках Юпитера и кольцах Сатурна. Впервые мы ощупываем космические объекты, электромагнитно осязаем Солнечную систему.
Гораздо более мощный метод экспериментальной (в противоположность наблюдательной) астрономии – космические исследования. Сейчас мы можем путешествовать в магнитосферы[157]
и атмосферы планет. Мы можем приземляться и странствовать по их поверхности. Мы можем брать образцы прямо из межпланетной среды. Наши первые предварительные шаги в космос показали нам широкий ряд явлений, о существовании которых мы никогда и не знали: радиационный пояс Ван Аллена[158], удерживающий проникшие в магнитосферу Земли заряженные частицы, области концентрации массы под круглыми морями Луны, извилистые каналы и большие вулканы Марса, испещренная кратерами поверхность Фобоса и Деймоса. Но что меня поражает больше всего – что еще до появления космических кораблей астрономы справлялись очень хорошо, хотя они были связаны по рукам и ногам. Интерпретации доступных им наблюдений были замечательными. Космические аппараты – это способ проверки выводов, сделанных астрономами путем умозаключений, метод выяснения, стоит ли верить астрономическим заключениям о самых дальних объектах – настолько далеких, что они абсолютно недоступны для космических аппаратов в ближайшем будущем.Одним из самых ранних главных спорных вопросов в астрономии был вопрос, что находится в центре Солнечной системы – Земля или Солнце. Взгляды Птолемея и Коперника объясняют видимое движение Луны и планет сравнительно точно. В случае практической задачи прогнозирования положения Луны и планет при взгляде с поверхности Земли не имело значения, какую принять гипотезу. Но философские выводы из геоцентрической и гелиоцентрической гипотезы были совершенно разными. И существовали способы проверки, какая из них верна. По мнению Коперника, Венера и Меркурий должны проходить фазы, как и Луна. По мнению Птолемея, не должны. Когда Галилей, используя один из первых астрономических телескопов, увидел Венеру в фазе полумесяца, он понял, что доказал гипотезу Коперника.