Простой пример процедуры поиска возникает при отыскании определенного пункта на карте. Карты разделены на квадраты, и можно считать, что масштаб и сетка взаимосвязаны так, что если мы попадем в нужный квадрат, то там и найдем нужный пункт. Рассмотрим тогда карту, разделенную на части через равные расстояния по обеим осям так, чтобы получилось по 1000 квадратов в каждом направлении. Это должно означать, что на карте теперь сетка с 1 000 000 квадратов. В нашем распоряжении две парадигмы для осуществления поиска. Ясно, что по окончании этой длительной процедуры мы можем сказать: "Разыскиваемый нами пункт находится в квадрате номер 342756”. Такой метод действительно срабатывает как подчиняющийся закону необходимого разнообразия. Мы определили нашу задачу в виде множества 1 000 000 и теперь предложили рассмотреть поиск в миллионном множестве. Но, как каждый школьник знает, есть парадигма, лучшая, чем эта. Он предложит пронумеровать квадраты по горизонтальной и вертикальной осям и определять каждый квадрат с помощью таких координат.
Эта вторая парадигма точно определяет генератор разнообразия. Поскольку можно записать 1000 + 1000=2000, мы в состоянии получить их произведение 1 000 000 — как общее разнообразие. Проблема размещения пункта и его поиска теперь уменьшена с разнообразия 1 000 000 до разнообразия 2000. Так произошло, поскольку мы прибегли к двумерному логическому пространству.
Что касается самого поиска, мы не знаем, сколько квадратов сетки нам придется проверить, прежде чем найдем нужный. При первой парадигме с разнообразием 1 000 000 можно попасть в цель как в самом первом квадрате, так, с другой стороны, и в самом последнем. Тогда мы заявляем, что в общем средняя длина поиска составляет половину миллиона квадратов. При второй парадигме мы вначале определяем номер квадрата по горизонтали, а затем по вертикали; этот процесс в среднем потребует 500 + 500 операций проверки, а всего 1000. Говоря математически, первый способ поиска требует числа шагов, эквивалентного половине общего множества (500 000), в то время как второй путь требует числа шагов, равного половине двух корней квадратных из общего множества:
2( V )^1/2
/2 = V1/2.Вторая парадигма очень мощная, поскольку является генератором разнообразия. Именно такой подход мы будем использовать. В аналогичных проблемах, перед которыми мы стоим, мы не имеем дела с двумерной картой. Мы имеем дело с задачами, сформулированными в многомерном логическом пространстве. Иначе говоря, размерность решения не просто "север-юг, восток-запад", здесь столько логических вариантов, сколько их может быть в самой проблеме. Любое серьезное решение в промышленности обычно увязывается с такими вещами, как производство, сбыт, финансы, персонал, научно-исследовательские и опытно-конструкторские работы... Именно они определяют размерность проблемы, поскольку решение, по определению, является условием существования. Тогда можно сказать, что в общем размерность любой проблемы, достойной мультинода, есть
Для
(n/2)V1/n
.Сделанный нами вывод в высшей мере важен. Прежде всего расчет подсказывает, что в случае карты, которая, как известно, двумерна, для достижения цели вместо половины миллиона шагов (первая парадигма) потребуется в среднем всего тысяча шагов (вторая парадигма). Это представляет колоссальное увеличение эффективности подготовки решения, поскольку предпринимаемые нами усилия теперь составляют одну пятую процента по сравнению с первым методом. Когда число измерений, учитываемых при решении проблемы, возрастает с двух до п, возрастание эффективности становится астрономическим.