Читаем Мозг и его потребности. От питания до признания полностью

Надеюсь, к концу книги вы уже хорошо представляете, как работают отдельные синапсы (их в нашем мозге – многие триллионы). Посчитаем: у человека около 90 млрд нейронов, и при этом каждый образует в среднем пять-десять тысяч синапсов.

В итоге общая цифра получается огромной, что очень важно, поскольку именно синапс является элементарной структурно-функциональной единицей нашего мозга. Не нейрон, а именно синапс. Чем больше синапсов, тем «умнее» мозг и сложнее информационные процессы.

Как работает синапс и можно ли на него повлиять?

Электрический импульс, распространяясь по мембране, запускает выделение вещества-медиатора из небольших пузырьков-везикул в синаптическую щель (вновь обратимся к рисунку 1.1). На следующем шаге молекулы медиатора, быстро преодолев узкое межклеточное пространство, воздействуют на чувствительные белки-рецепторы, характерные для поверхности клетки-мишени. Если это возбуждающий нейромедиатор и если воздействие окажется достаточно сильным, такая клетка генерирует импульс, и он бежит дальше. В этом случае сигнал о некой потребности имеет шанс повлиять на кору больших полушарий и, значит, на поведение целостного организма.

Даже такое упрощенное описание показывает, что существуют достаточно очевидные пути и способы эффективного изменения работы синапса. Так, можно вводить химические вещества (рис. 12.1, внизу), похожие на медиатор («агонисты»), или вещества, мешающие медиатору действовать на рецепторы («антагонисты»). В первом случае произойдет активация, а во втором – ослабление синаптической передачи информации (поскольку не все рецепторы будут доступны для медиатора). Особый путь – влияние на свойства белков-рецепторов и их количество (например, за счет включения либо выключения генов – фрагментов ДНК, кодирующих рецепторные белки). Целый ряд механизмов, которые позволяют усилить работу синапсов, обусловлен подавлением систем инактивации медиаторов (рис. 12.1, вверху). В состав таких систем в разных синапсах входят белки-ферменты или белки-насосы (на аксонах либо в глиальных клетках), которые удаляют молекулы медиатора из синаптической щели, прекращая их контакт с рецепторами. Интересно и важно, что молекулы агонистов и антагонистов, как правило, имеют дополнительные элементы, защищающие их от инактивации, позволяющие взаимодействовать с рецептором более длительное, чем сам медиатор, время.


Рис. 12.1. Основные пути фармакологических влияний на активность синапса. Вверху на рисунке цифрами отмечено воздействие на систему инактивации: блокада белков-ферментов, разрушающих медиатор (1) и белков-насосов, переносящих медиатор обратно в аксон (2) либо в глиальную (вспомогательную) клетку (3).

Внизу на схеме показан белок-рецептор (А) на мембране клетки-мишени и присоединение к нему медиатора (Б), агониста (В), антагониста (Г). В молекулах агониста и антагониста имеются защитная часть (вверху, мешает инактивации) и ключевая часть; у агониста она такая же, как у медиатора, и активирует рецептор, у антагониста – позволяет занять рецептор, но срабатывания рецептора не происходит (конкуренция антагониста и медиатора)

Во всех этих случаях на уровне целостной работы мозга и психических процессов мы можем получить усиление либо снижение потребности, а также эмоций, связанных с ее удовлетворением или с неудовлетворением.

Синапсы, медиаторы и их рецепторы (а последние обнаруживаются не только в составе синапсов и не только на мембране нейронов) являются основной мишенью психофармакологии. Это важнейшая область не только медицины, но и человеческой культуры вообще, поскольку попытки так или иначе повлиять на работу мозга, активизировать либо затормозить определенные его функции сопровождают всю историю нашей цивилизации.

Эмоции и выбор поведенческих программ

Рассмотрим схему на рис. 12.2. На ней показано, как центры потребностей встраиваются в общее поле работы мозга и как их деятельность отражается на других психических и нервных процессах.


Рис. 12.2. Взаимные связи центров биологических потребностей, сенсорных центров, формирующих стимулы, усиливающие или ослабляющие потребности (*), а также центров положительных (**) и отрицательных (***) эмоций, реагирующих на результаты поведения. Эмоциональный фон, в свою очередь, определяет процессы формирования памяти в коре больших полушарий, изменяет «рейтинг» поведенческих программ


Перейти на страницу:

Похожие книги

Происхождение жизни. От туманности до клетки
Происхождение жизни. От туманности до клетки

Поражаясь красоте и многообразию окружающего мира, люди на протяжении веков гадали: как он появился? Каким образом сформировались планеты, на одной из которых зародилась жизнь? Почему земная жизнь основана на углероде и использует четыре типа звеньев в ДНК? Где во Вселенной стоит искать другие формы жизни, и чем они могут отличаться от нас? В этой книге собраны самые свежие ответы науки на эти вопросы. И хотя на переднем крае науки не всегда есть простые пути, автор честно постарался сделать все возможное, чтобы книга была понятна читателям, далеким от биологии. Он логично и четко формулирует свои идеи и с увлечением рассказывает о том, каким образом из космической пыли и метеоритов через горячие источники у подножия вулканов возникла живая клетка, чтобы заселить и преобразить всю планету.

Михаил Александрович Никитин

Научная литература
Механизм Вселенной: как законы науки управляют миром и как мы об этом узнали
Механизм Вселенной: как законы науки управляют миром и как мы об этом узнали

Обладатель ученой степени в области теоретической химической физики, старший научный сотрудник исследовательской группы по разработке новых лекарств Скотт Бембенек в лучших традициях популярной литературы рассказывает, как рождались и развивались научные теории. Эта книга — уникальное сочетание науки, истории и биографии. Она доступным языком рассказывает историю науки от самых ранних научных вопросов в истории человечества, не жертвуя точностью и корректностью фактов. Читатель увидит: — как энергия, энтропия, атомы и квантовая механика, составляющие основу нашей Вселенной, управляют миром, в котором мы живем; — какой трудный путь прошло человечество, чтобы открыть законы физических явлений; — как научные открытия (и связанные с ними ученые) сформировали мир, каким мы его знаем сегодня.

Скотт Бембенек

Научная литература