Эффект переноса действия в сферу математики помогает объяснить результаты и другого исследования, проведенного недавно Артом Гленбергом. Оно показало, что дети, которые решали математические задачи, «проигрывая» их в реальности, лучше понимали суть самой математической операции, лежащей в основе примера{65}
. Вот какую математическую задачу Гленберг давал ученикам третьего класса:В зоопарке живут два бегемота и два крокодила.
Их держат рядом, а потому Пит, служитель зоопарка, кормит их одновременно.
Итак, пришла пора Питу кормить бегемотов и крокодилов.
Каждому бегемоту Пит дает по семь рыбин. (Зеленый свет.)
Затем он дает каждому крокодилу по четыре рыбины. (Зеленый свет.)
Бегемоты и крокодилы счастливы, что теперь у них есть обед.
Сколько всего рыбин было у бегемотов и крокодилов, прежде чем они начали обедать?
Ученики, проигравшие ситуацию, то есть отсчитавшие соответствующее количество игрушечных рыбок и раздавшие их игрушечным животным, вдвое чаще давали правильный ответ, чем те дети, которые просто перечитывали условие задачи еще раз.
А сейчас самое интересное: была и третья группа школьников, которые при каждом включении зеленого света отсчитывали соответствующее количество элементов конструктора «Лего». Так вот, они справились с задачей ничуть не лучше, чем дети, которые просто ее перечитали. Отсюда автор исследования делает удивительный вывод: само по себе движение не улучшает понимания. Третьеклассники из «лего»-группы тоже совершали определенные действия с предметами, но эти предметы не были связаны с сюжетом рассказа: детали конструктора не имели формы рыбок, а фигуры, которым предлагались эти как бы рыбки, не имели формы бегемотов и крокодилов. Если прямая связь между словами и объектами отсутствует, сила практического действия теряется.
Примечательно, что использование кубиков или других предметов и пособий становится все более популярным в наших школах, особенно в элитных. Детей учат считать с помощью кубиков или палочек. Бытует мнение, что так можно решить «проблему» с математикой. Игра в кубики была придумана в начале ХХ века именно для использования в начальной школе и считалась как учителями, так и родителями панацеей от всех образовательных трудностей. В последние годы производители школьных принадлежностей придумали множество продуктов, которые, по сути, являются вариацией тех же кубиков, – вы только взгляните на витрины детских магазинов. Частные школы теперь используют кубики чуть ли не как инструмент вербовки учеников{66}
. В поддержку кубиков сегодня выступает даже Национальный совет учителей математики, называя их очень полезным пособием, помогающим ученикам понять такие базисные математические понятия, как сложение и вычитание{67}. Движение в защиту кубиков можно считать свидетельством того, что все возвращается на круги своя и игровой элемент снова считается важной составной частью процесса обучения. Однако не стоит забывать: то, чему ребенок научится, зависит от того, как именно происходит игра кубиками. Не думайте, что достаточно вручить детям кубики или конструктор «Лего», как в описанном выше эксперименте, и дело будет сделано. Важно другое. Как ясно показывает работа Гленберга, наглядные пособия позитивно сказываются на процессе обучения только тогда, когда они непосредственно связаны с задачей, которую ученики пытаются решить.Почему непосредственное соотнесение действий детей с содержанием истории так важно? По мнению Гленберга, корень «зла» – в слове «каждый»: детям бывает особенно сложно понять, что оно означает. Дело и вправду непростое: слово должно быть соотнесено с правильным набором объектов, а объекты из этого множества необходимо рассматривать как отдельные единицы. Прочитывая слово «каждый», недостаточно отметить про себя, что крокодилов на самом деле несколько. Читатель должен осознать, что имеются два крокодила и их кормят отдельно. Физические манипуляции, совершаемые с игрушечными рыбками и фигурками зверей, делают это очевидным, ведь ребенку нужно отсчитать положенное количество рыбок для каждого крокодила. Когда же дети не выполняют таких конкретных действий, они не получают наглядного представления о происходящем. Как показало исследование, проведенное Гленбергом, дети из «лего»-группы совершали ту же типичную ошибку: они отвечали, что бегемоты и крокодилы получили 11 рыбин, а не 22. Похоже, дети не осознавали, что слово «каждый» накладывает требование удвоить число 11 (рыбин), поскольку в зоопарке есть два крокодила и два бегемота. Разыгрывая сюжет с подходящими пособиями, дети начинают понимать смысл слов, таких как «каждый».