Читаем Мозг. Как он устроен и что с ним делать полностью

Методами электронной микроскопии удалось обнаружить промежутки и даже настоящие щели (до 1000 нм) в сосудах большинства тканей. Вспомните, для сравнения, в химическом синапсе щель около 40 нм. И туда еще помещаются рецепторы и нейромедиаторы! А тут целых 1000 нм! Через эти щели во многих органах циркулирует вода с растворенными в ней соединениями.

Рис. 10. Схематическое изображение ГЭБ (продольный срез сосуда)

В сосудах мозга же никаких промежутков нет (ни больших ни малых). Все запаяно и состыковано, молекула к молекуле. И тут как раз срабатывает эффект стеклянной колбы.

Такая стыковка осуществляется за счет плотных контактов. Белки, словно плотными шелковыми нитями, сшивают мембраны соседних клеток.

Клетки астроциты держатся от сосуда чуть в стороне, оставляя небольшой просвет (около 20 нм). Из-за многочисленных отростков астроциты похожи на малюсенькие звездочки. На концах отростков находятся пластинчатые расширения, которыми они и обхватывают сосуд (оставляя, как уже было упомянуто, небольшой зазор).

Эти пластинчатые расширения подгоняются друг к другу так, чтобы образовывалась единая, опоясывающая кровеносный сосуд структура. Отростки астроцитов можно сравнить с присосками. Эти ножки с присосками вытягивают из крови нужные нейронам питательные компоненты. Сама нервная клетка не может активно питаться. Ее кормят астроциты.

Таким образом, у нас возникает труба в трубе с зазором – своеобразный трехслойный барьер. Можно подумать, что он ничего не пропускает. Но на самом деле ГЭБ свободно пропускает некоторые относительно некрупные молекулы (воды, мочевины, глицерина, кофеина, ряда аминокислот и других веществ). Они проходят через плотные контакты между клетками эндотелия.

Получается, наша колба, хоть и «спаяна» без промежутков, имеет свои особенности. Она создана бабулей-природой, чтобы пропускать только нужное.

Это связано с тем, что мембраны клеток состоят не из оксида кремния, как стекло, а из гораздо более крупных органических молекул (между ними, кстати, тоже есть небольшие зазоры). Мембраны могут избирательно погружать в себя ряд веществ. Так некоторые молекулы и транспортируются мембраной.

Существует еще несколько вариантов переноса веществ (все мы подробно рассматривать не будем, чтобы не перегружать материал терминологией). Например, активный транспорт осуществляется за счет специфических белков-транспортеров. Они связываются с веществом и протаскивают его через мембрану. Как видите, самостоятельно вещество проникнуть из сосуда (или обратно) не может. Только связавшись со специальным белком. Белок-транспортер можно сравнить с ключником или сторожем.

И вся эта замысловатая система работает, чтобы отгородить мозг от патогенов и токсинов. Да-да, именно от них. Вообще, мозг – настоящий эгоист: сам отгородился, а другие пусть мучаются (в других-то органах просветы в сосудах есть)!

Лишь небольшая часть бактерий способна обходить ГЭБ (например, менингококки, пневмококки, кишечные палочки). И, к сожалению, все они так или иначе могут вызвать энцефалит (воспаление ткани мозга) и менингит (воспаление оболочек, окружающих мозг).

И тут мы подходим к другой важной проблеме: как бороться с уже проникшими в мозг опасными микроорганизмами? Ведь ГЭБ задерживает и многие лекарства!

Бич современной нейрофармакологии

Лекарственная терапия требуется при многих заболеваниях мозга, в том числе когда человек подхватил инфекцию, распространившуюся в мозговой ткани. И в рамках этой терапии должны использоваться препараты не только эффективные, но и способные пробиться через «вредный» барьер. Все это, естественно, значительно увеличивает их стоимость.

Ученым приходится изобретать хитроумные способы обхода ГЭБ. Чтобы пересечь барьер, вещество должно либо не превышать массу 500 кДа[1], либо иметь возможность подключиться к естественным механизмам (например, к белкам-транспортерам).

98 % современных препаратов не удовлетворяют этим требованиям, соответственно, они не в состоянии оказывать лечебное воздействие в мозге. Непростая задачка для ученых?

Интересно, что большинство антидепрессивных, антипсихотических и снотворных средств проходят ГЭБ. Именно с этим связаны успехи фармакологической терапии психических нарушений (на счастье психотерапевтам).

Но ученые – люди упрямые и изобретательные, так что им удалось найти несколько хоть и изощренных, но достаточно эффективных способов преодолеть ГЭБ. Для этого используют микроскопические газовые пузырьки. Они попадают в мозг с помощью соляного раствора, а затем, благодаря ультразвуку, их приводят в состояние вибрирующего движения. Это позволяет им пересечь ГЭБ.

Другой вариант транспорта лекарственных средств через ГЭБ называют троянским конем (да, термин происходит от названия знаменитого мифического деревянного коня, созданного греками во время Троянской войны): лекарственный препарат маскируют присоединенным к нему белком-транспортером и спокойно переправляют через ГЭБ. Сторож-ключник сам открывает нам ворота.

Перейти на страницу:

Все книги серии Библиотека Гутенберга

Безумие ли?
Безумие ли?

Основная цель книги – борьба со страхом и предубеждением к больным с психическими расстройствами. С одной стороны болезни психики, «безумие» рождают необычный и противоречивый интерес, с другой – «сумасшествие» является настолько пугающим, что в общественном сознании рождается желание закрыться, удалить психически больных из жизни общества. С третьей стороны, некоторое невежество, рожденное страхом, приводит к определенным спекуляциям в этой области. Зачастую родственники больных обращаются к неврологам, психологам, а то и вовсе к экстрасенсам и шаманам, а к психиатру боятся идти. Но вовремя не оказанная помощь может привести к более худшим последствиям, чем необходимость числиться на учете. Данная книга поможет взглянуть на все эти проблемы и будет способствовать уменьшению стигматизации и предубеждений перед психическими расстройствами и психиатрией.

Александр Станиславович Граница

Медицина

Похожие книги

Складки на ткани пространства-времени. Эйнштейн, гравитационные волны и будущее астрономии
Складки на ткани пространства-времени. Эйнштейн, гравитационные волны и будущее астрономии

Гравитационные волны были предсказаны еще Эйнштейном, но обнаружить их удалось совсем недавно. В отдаленной области Вселенной коллапсировали и слились две черные дыры. Проделав путь, превышающий 1 миллиард световых лет, в сентябре 2015 года они достигли Земли. Два гигантских детектора LIGO зарегистрировали мельчайшую дрожь. Момент первой регистрации гравитационных волн признан сегодня научным прорывом века, открывшим ученым новое понимание процессов, лежавших в основе формирования Вселенной. Книга Говерта Шиллинга – захватывающее повествование о том, как ученые всего мира пытались зафиксировать эту неуловимую рябь космоса: десятилетия исследований, перипетии судеб ученых и проектов, провалы и победы. Автор описывает на первый взгляд фантастические технологии, позволяющие обнаружить гравитационные волны, вызванные столкновением черных дыр далеко за пределами нашей Галактики. Доступным языком объясняя такие понятия, как «общая теория относительности», «нейтронные звезды», «взрывы сверхновых», «черные дыры», «темная энергия», «Большой взрыв» и многие другие, Шиллинг постепенно подводит читателя к пониманию явлений, положивших начало эре гравитационно-волновой астрономии, и рассказывает о ближайшем будущем науки, которая только готовится открыть многие тайны Вселенной.

Говерт Шиллинг

Научная литература / Прочая научная литература / Образование и наука
Механизм Вселенной: как законы науки управляют миром и как мы об этом узнали
Механизм Вселенной: как законы науки управляют миром и как мы об этом узнали

Обладатель ученой степени в области теоретической химической физики, старший научный сотрудник исследовательской группы по разработке новых лекарств Скотт Бембенек в лучших традициях популярной литературы рассказывает, как рождались и развивались научные теории. Эта книга — уникальное сочетание науки, истории и биографии. Она доступным языком рассказывает историю науки от самых ранних научных вопросов в истории человечества, не жертвуя точностью и корректностью фактов. Читатель увидит: — как энергия, энтропия, атомы и квантовая механика, составляющие основу нашей Вселенной, управляют миром, в котором мы живем; — какой трудный путь прошло человечество, чтобы открыть законы физических явлений; — как научные открытия (и связанные с ними ученые) сформировали мир, каким мы его знаем сегодня.

Скотт Бембенек

Научная литература
История Византийских императоров. От Константина Великого до Анастасия I
История Византийских императоров. От Константина Великого до Анастасия I

÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷Пятитомное сочинение А.М. Величко «История Византийских императоров» раскрывает события царствования всех монархических династий Священной Римской (Византийской) империи — от св. Константина Великого до падения Константинополя в 1453 г. Это первое комплексное исследование, в котором исторические события из политической жизни Византийского государства изображаются в их органической взаимосвязи с жизнью древней Церкви и личностью конкретных царей. В работе детально и обстоятельно изображены интереснейшие перипетии истории Византийской державы, в том числе в части межцерковных отношений Рима и Константинополя. Приводятся многочисленные события времён Вселенских Соборов, раскрываются роль и формы участия императоров в деятельности Кафолической Церкви. Сочинение снабжено портретами всех императоров Византийской империи, картами и широким справочным материалом.Для всех интересующихся историей Византии, Церкви, права и политики, а также студентов юридических и исторических факультетов.Настоящий том охватывает эпоху от Константина Великого до Анастасия I.÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷

Алексей Михайлович Величко

Научная литература