Единичный импульс вызывает короткий разовый всплеск активности в нервных клетках, и у вас, например, дергается рука. Это прикольно, но ожидаемо, и поэтому не очень интересно для ученых. В настоящих экспериментах чаще всего используется длительная стимуляция[105]
. Ученый держит над вами катушку (и внимательно следит, чтобы она оставалась над нужным участком мозга, даже если вы пошевелите головой), а катушка генерирует магнитные импульсы с определенной частотой. У такого воздействия два радикальных преимущества[106]. Во-первых, эффект сохраняется еще несколько минут (или даже несколько десятков минут) после того, как стимуляция прекратится. Выполнять задания, предложенные экспериментаторами, гораздо удобнее, если вы уже не должны сохранять неподвижность и не отвлекаетесь на тарахтящую штуковину за вашей головой. Во-вторых, в зависимости от параметров стимуляции можно либо усилить, либо, наоборот, подавить активность нужной зоны коры. Как правило, если стимуляция низкочастотная (например, 1 Гц, один импульс в секунду), то работа соответствующего участка мозга временно нарушается, а если стимуляция высокочастотная (от 5 Гц и выше), то возбудимость, наоборот, увеличивается.Конкретные механизмы, отвечающие за эти противоречивые эффекты, сегодня продолжают интенсивно изучаться[107]
,[108],[109] – и на клеточных культурах, и на животных, и, насколько это возможно, на людях. Для того чтобы сказать об этих механизмах что‐то осмысленное, мне придется нарушить свои авторские планы, отступить от линейной логики повествования (в мозге все связано со всем!) и уже сейчас рассказать вам про способность нейронов к усилению или ослаблению синаптических связей. Вообще‐то я надеялась подробно обсуждать ее в главе о памяти. Но если вы врубитесь в основную идею уже сейчас, при ее беглом изложении, то читать главу о памяти вам будет легко и приятно.Вот смотрите. По нейрону распространяется возбуждение. Доходит до пресинаптической мембраны. Вызывает там выброс нейромедиаторов. Они действуют на рецепторы, расположенные на постсинаптической мембране. Например – классическая ситуация из учебника – у нас есть нейромедиатор глутамат и AMPA-рецепторы, с которыми он связывается. В ответ на это AMPA-рецепторы открывают свои ионные каналы, пропускают в клетку положительно заряженные ионы, происходит деполяризация мембраны, и возбуждение благополучно переходит с первого нейрона на второй. Чем больше в мембрану встроено AMPA-рецепторов, тем выше вероятность, что это произойдет. Их число может довольно быстро меняться, и это ключевой механизм, лежащий в основе кратковременной памяти.
Но что должно произойти для того, чтобы AMPA-рецепторов в синапсе стало больше? Тут на сцену выходит самая главная молекула во всей книжке, во всей памяти и вообще во всей нейробиологии – NMDA-рецептор.
Все нормальные ионные каналы открываются либо в том случае, если с ними связалась какая-нибудь сигнальная молекула (тогда они называются лиганд-зависимыми), либо в том случае, если изменился потенциал мембраны, на которой они находятся (тогда они называются потенциал-зависимыми). Но не таков NMDA-рецептор. Он соглашается работать только при соблюдении обоих этих условий одновременно. Это значит, что он работает тогда, когда возбуждены одновременно два нейрона: и тот, с которого пришел сигнал (и поступили нейромедиаторы), и тот, на мембране которого NMDA-рецепторы находятся (и при этом она уже деполяризована). То есть это молекула-детектор совпадений, он регистрирует одновременную активность двух нейронов. Тогда и только тогда он открывает свой ионный канал и начинает пропускать внутрь клетки ионы кальция. Эти ионы кальция, в свою очередь, могут влиять на огромное количество событий, происходящих в клетке, причем здесь важно, сколько именно ионов кальция поступило в клетку и с какой скоростью.