Читаем Мозг – повелитель времени полностью

Исследователи обнаружили такие нейроны, избирательным образом реагирующие на разные интервалы времени, в мозге многих животных — от кур и крыс до электрических рыб. Мы пока не знаем точно, как возникает этот избирательный ответ, но некоторые исследования показывают, что как минимум отчасти это связано с кратковременной синаптической пластичностью141.

СЕТИ, ЗАВИСЯЩИЕ ОТ СОСТОЯНИЯ

Понятно, что представленная выше упрощенная схема, состоящая из двух нейронов, чрезвычайно сильно отличается от реальной ситуации в мозге. В кубическом миллиметре ткани коры головного мозга могут содержаться сотни тысяч нейронов и сотни миллионов синапсов142. Существуют гораздо более общие модели, объясняющие, каким образом сети нейронов коры мозга обрабатывают сложные пространственные и временны́е образы. В частности, наша лаборатория, а позднее австрийский математик Вольфганг Маасс и его коллеги предложили так называемую модель сети, зависящей от состояния143. Чтобы понять суть модели, нужно понять концепцию состояния кортикальной сети.

В физике под состоянием системы понимают набор параметров, дающих существенную информацию о текущей «конфигурации» системы. Представьте себе несколько шаров на бильярдном столе. Состояние такой системы можно описать положением и импульсом (произведением массы на скорость) каждого шара. В принципе, знание состояния шара в какой-то момент времени позволяет предсказать не только, что произойдет в следующий момент, но и что происходило недавно: зная состояние системы в момент времени t, в соответствии с законами физики можно определить ее состояние в моменты времени t-1 и t+1. Каков эквивалентный набор параметров, который мог бы позволить нам определять состояние группы нейронов головного мозга?

Обычно состояние сети нейронов в конкретный момент времени определяется тем, какие нейроны находятся в возбужденном состоянии. Я буду называть это активным состоянием, поскольку по нему можно определить, какие именно нейроны активно передают информацию своим партнерам. Однако это далеко не полное описание состояния сети, поскольку только на основании активного состояния нельзя предсказать, как будет вести себя сеть в следующий момент. На поведение сети в будущем влияют многие другие свойства нейронов. Одно такое свойство — кратковременная синаптическая пластичность. Понятно, что состояние группы нейронов в следующий момент зависит не только от того, какие нейроны возбуждены в настоящий момент, но и от эффективной силы каждого синапса в каждый момент времени, а это, в свою очередь, зависит от того, что эти синапсы делали в прошлом. Кратковременная синаптическая пластичность — лишь одно из многих свойств нейронов, способных изменяться в диапазоне времени порядка сотен миллисекунд. Такие свойства описывают скрытое состояние сети: «скрытое» по той причине, что электроды нейробиологов не могут их проанализировать.

Активное состояние сети в момент времени t определяется входным сигналом и состоянием (активным и скрытым) в момент времени t-1. Можно еще раз воспользоваться аналогией с кругами на воде. Представьте себе, что на поверхность пруда падают две капли дождя: первая в момент времени t = 0, вторая — в момент времени t = 100 мс. Состояние поверхности пруда в момент времени t = 101 мс будет зависеть от взаимодействия между вторым сигналом (второй каплей) и текущим состоянием (волнами, созданными на поверхности пруда первой каплей). Важно, что характер волн от падения второй капли будет разным, если она упадет через 100 и через 200 мс после первой. Вывод таков, что, глядя на моментальный снимок поверхности пруда в момент времени t = 400 мс, мы сможем определить не только, сколько капель упало, но и оценить интервал времени между их падением (если их было две): недавнее прошлое поверхности пруда отражается в его настоящем. Аналогичным образом ответ сети нейронов определяется текущим входным сигналом и состоянием системы в недавнем прошлом, которое каким-то образом закодировано в настоящем. Таким образом, «ответ» поверхности пруда и сети нейронов зависит от состояния. Действительно, мониторинг активности зрительной и слуховой коры показывает, что ответ сети нейронов на стимул сильно зависит от предыдущих стимулов и от времени, которое прошло после их действия144. Компьютерное моделирование показывает, что зависящие от состояния сети нейронов могут различать не только интервалы времени, но и сложные пространственно-временны́е образы, такие как разговорная речь145.

ПОПУЛЯЦИОННЫЕ ЧАСЫ

Перейти на страницу:

Все книги серии Большая наука

Похожие книги