Существует несколько способов описать дисперсию (разброс, отклонение) значений переменной от ее среднего значения. Один из них — подсчитать размах выборки — разность наибольшего и наименьшего значений. Другой, более эффективный способ измерения дисперсии — метод среднего отклонения от среднего значения. Если среднее качество блюд, которые попробовала Кэтрин при первом посещении ресторанов, обозначить как, скажем, «хорошее», а среднее отклонение от среднего значения равняется, скажем, «очень хорошему» в положительную сторону и «весьма посредственному» в отрицательную сторону, мы можем сказать, что степень дисперсии — среднего отклонения мнения Кэтрин о блюдах, которые она впервые пробует в ресторанах, не очень велика. Если же среднее отклонение варьирует от «великолепного» в положительную сторону до «весьма посредственного» в отрицательную сторону, то можно сказать, что дисперсия довольно велика.
Но есть еще более действенный способ вычисления дисперсии, который можно применить к любой непрерывной переменной величине. Это среднеквадратическое отклонение, оно же СКО, обозначаемое греческой буквой σ (сигма). Среднеквадратическое отклонение — это квадратный корень из дисперсии переменной величины. В принципе, среднеквадратическое отклонение не слишком отличается от среднего, но обладает кое-какими чрезвычайно полезными свойствами.
На кривой нормального распределения на рисунке 2 отмечены среднеквадратические отклонения. Примерно 68% значений переменной находятся в пределах от +σ до
Еще один набор полезных фактов о среднеквадратическом отклонении касается соотношения между процентилями (сотыми частями распределения, выстроенными в ряд по их величине) и среднеквадратическими отклонениями. Примерно 83% наблюдаемых случаев имеют менее одного среднеквадратичного отклонения, превышающего среднее значение. Наблюдение с одним СКО от среднего значения находится в 84% распределения. Оставшиеся 16% наблюдаемых случаев превышают 84 процентиля. Почти 98% количества всех наблюдений содержат менее двух СКО выше среднего значения. Ровно два СКО от среднего значения входят в 98%. Всего 2% оставшихся наблюдаемых случаев превышают это значение. Почти все наблюдения окажутся между тремя СКО ниже среднего значения и тремя СКО выше среднего значения.
Знание соотношения между среднеквадратическими отклонениями и процентным выражением помогает судить о большинстве непрерывных переменных величин, с которыми мы сталкиваемся. Например, расчет среднеквадратического отклонения часто используется в финансовой сфере. Среднеквадратическое отклонение уровня дохода на инвестиции определяет уровень нестабильности инвестиций. Если пакет акций в среднем приносит 4% прибыли за последние десять лет с среднеквадратическим отклонением 3%, это означает, что наиболее вероятным предположением будет то, что 68% времени в будущем уровень прибыли составит от 1 до 7% и 96% времени доход будет больше, чем -2%, и меньше 10%. Это довольно стабильно. Такой доход не сделает вас богачом, но и нищим вы тоже не будете. Если среднеквадратическое отклонение равно восьми, это означает, что 68% времени уровень дохода будет между -4 и +12%. Этот пакет акций может действительно принести хорошую прибыль. 16% времени вы будете получать более чем +12% прибыли. В то же время, 16% времени вы будете терять более чем 4%. Это весьма нестабильно, 2% времени вы будете зарабатывать более чем 20%. Можно разбогатеть, а можно и остаться без гроша.
Так называемые устойчивые акции обладают высокой стабильностью как относительно дивидендов, так и относительно цены. Они могут приносить 2, 3, 4% прибыли каждый год и, вероятно, не слишком поднимутся в цене при растущем рынке, но также и не слишком упадут в цене в ситуации, когда цены на рынке снижаются. Так называемые акции роста обычно приносят прибыль с более высоким среднеквадратическим отклонением, что означает более высокий потенциал роста наряду со значительно более высоким риском падения курса.