Во-первых, как определить, что мы установили все возможные искажающие факторы — переменные, связанные и с предсказывающей, и с результирующей переменной? Почти никогда нельзя утверждать это наверняка. Мы можем только измерить то, что кажется нам важным, и проигнорировать бесконечное число переменных, которые кажутся нам неважными. Но ПООН: Предположения Обычно Оказываются Неверными. Поэтому, как правило, мы терпим поражение в этой игре.
Во-вторых, насколько точно мы измеряем каждую возможную искажающую переменную? Если мы измерили ее неточно, это значит, что мы недостаточно проконтролировали ее действие. Если мы измерили ее настолько неточно, что она не валидна, значит, мы не проконтролировали вообще ничего.
Иногда анализ множественной регрессии — единственный доступный способ исследовать важные и интересные вопросы. Например, вопрос о том, связана ли религиозность и соблюдение обрядов с уровнем воспроизведения потомства. Мы не можем провести эксперимент для изучения этого вопроса, случайным образом назначив, кому из участников эксперимента быть религиозным, а кому нет. Мы можем использовать только корреляционные методы, такие как АМР. Между прочим, религиозность коррелирует с уровнем воспроизведения потомства как на индивидуальном, так и на государственном и культурном уровне. При условии контролирования факторов дохода, возраста, состояния здоровья и других факторов на индивидуальном уровне, на уровне этнических групп и на уровне государств корреляция такова, что чем выше религиозность, тем выше уровень воспроизведения потомства. Мы не знаем, почему именно это так, и корреляция между религиозностью и плодовитостью может быть не причинно-следственной связью, а, скорее, следствием какой-либо иной, третьей, неизвестной переменной, которая влияет как на религиозность, так и на уровень воспроизведения потомства. Может быть, причинно-следственная связь здесь вообще работает в обратном направлении: люди, у которых много детей, начинают искать поддержку в религии! Тем не менее данное корреляционное открытие интересно само по себе и может привести к реальным практическим последствиям.
Я хотел бы окончательно прояснить суть дела: корреляционные исследования и исследования множественной регрессии далеко не всегда бесполезны. Я сам часто использую принцип множественной регрессии, когда провожу эксперименты по установлению причинно-следственной связи. Я чувствую себя более уверенно, когда знаю, что данная взаимосвязь существует в естественных условиях, а не только в лаборатории или совершенно нетипичной окружающей среде.
Более того, всегда можно придумать уловки, которые убедят нас, что мы что-то узнали о причинно-следственной связи. Возьмем корреляцию между благосостоянием государств и уровнем IQ населения. Что здесь причина, а что следствие? Сама по себе данная корреляция весьма проблематична. Как благосостояние, так и IQ связаны с множеством других факторов — например, с физическим здоровьем. «Здоров, богат и умен» — это не просто бытовое представление о завидном женихе; эти три фактора тесно связаны между собой целым набором корреляций, включающих в себя множество переменных, которые потенциально могут быть причинами или следствиями того или иного фактора. Кроме того, причинно-следственная связь здесь весьма правдоподобно работает в обоих направлениях. По мере того как население страны развивается умственно, оно становится богаче вследствие того, что людям становится доступны более прогрессивные и высокоорганизованные способы достижения благосостояния. А по мере того, как население становится богаче, оно развивается умственно, потому что благосостояние в целом способствует повышению качества образования.