Вскоре выяснилось, что диктатор Перон попался на удочку шарлатана, которому, хотя и удалось "атомизировать" 100 миллионов долларов, но было не под силу получить атомную энергию путем термоядерного процесса. Надувательство было обнаружено комитетом по расследованию, созданным аргентинским парламентом. Вот еще один пример того, как "алхимик" смог водить за нос своего повелителя. Рихтер, в течение многих лет обласканный как авторитетный атомщик, осыпанный деньгами и почестями, обладатель многих вилл и бронированной машины, подаренной президентом, впал в немилость.
Глава государства ненадолго пережил на своем посту бывшего фаворита. В сентябре 1955 года участь Перона была решена произошедшим военным переворотом. Предполагают, что одной из причин падения аргентинского диктатора была афера его "придворного алхимика". Во всяком случае "алхимика" милостью Перона можно заслуженно поставить в один ряд с его коллегами типа Зейлера, Эмменса и Таузенда. Во все времена, вплоть до наших дней, они дурачили свои жертвы. Их жизнь, полная приключений, могла бы служить сюжетом для детективного романа. Мы привели лишь некоторые эпизоды из жизни этих мошенников, полное же описание их судеб ждет своей книги. Когда же она будет написана, эта книга -- "Путь алхимика"?
На пути к неисчерпаемой энергии
В начале 50-х годов мир был напуган взрывом водородной бомбы. Это были первые неуправляемые термоядерные реакции, выпущенные на волю человеком. Кое-кто считал, что это прогресс на пути к контролируемому ядерному синтезу; теперь, мол, требуется лишь "обуздать" Н-бомбу. Какая ошибка! Ведь бомба остается бомбой. Цель ни в коем случае не оправдывает средства. С тех пор прошло уже более четверти века. Учитывая бурное развитие науки и техники, можно сегодня с полным правом спросить себя: почему мы не продвинулись вперед с созданием искусственного Солнца на Земле? Что нужно еще сделать, чтобы разрешить, наконец, великую проблему трансмутации -- превращение водорода и его изотопов в гелий?
Когда Рональд Рихтер в 1951 году пытался осуществить свой "ядерный синтез", он рассчитывал произвести фурор. Но один известный ученый сказал тогда, что господину Рихтеру надо было сделать возможными три невозможные вещи: достичь температуры в несколько десятков миллионов градусов без урановой бомбы, поддерживать эту температуру в течение нескольких секунд и, наконец, создать такое давление, которое имеется в глубине звезд. Однако никто не может достать звезду с неба, даже если он -- любимец диктатора!
Перечисленные условия являются необычайно жесткими, но они действительно необходимы. Ядра атомов водорода или его изотопов должны слиться, образуя гелий. Однако они отталкивают друг друга из-за своих зарядов. Если же, несмотря на это, ядра атомов подойдут очень близко друг к другу и в конце концов соединятся, то они должны находиться в состоянии плазмы, когда имеются лишь "голые" ядра и свободные электроны. Такое особое состояние материи появляется лишь при температурах в миллионы градусов. В плазменном состоянии существует несколько возможностей превращения водорода в гелий. Теория отдает предпочтение двум реакциям, которые исходят не из обычного водорода, а из его изотопов -- дейтерия (D) и трития (Т):
D + Т [4]He+ n + Энергия (1)
D + D [3]He + n + Энергия (2), или
D + D T + H + Энергия
Процесс (1) протекает в дейтериево-тритиевой плазме при температурах свыше 40 миллионов градусов, в то время как реакция (2) для своего поджигания требует температуры около 300 миллионов градусов. Следовательно, все не так просто, как представляли себе в 20-х годах Панет и Петерс. Кроме того, недостаточно получить 40 или 300 миллионов градусов, нужно, чтобы при этих температурах плазма была удержана в стабильном состоянии какое-то минимальное время -- около 1 с. Далее, для начала синтеза совершенно необходимо определенное число частиц. Эти условия устанавливаются так называемым критерием Лоусона: произведение времени удержания плазмы на плотность частичек для реакции D с Т при рабочей температуре в 100 миллионов градусов должно иметь значение 10[14] с/см[3]. Что это означает? При температуре в 100 миллионов градусов 10[14] реакционноспособных ядер атомов на кубический сантиметр должны быть удержаны в течение, по крайней мере, одной секунды. Если это удастся, то термоядерный реактор начнет работать.