4 + 5 + 54 + 57 + 242 2 + 63 + 45 + 14 = 726, 726 • 27,2122 = 57 драконических лет = 54 тропических года + 33 (или 32) дня = 19755,2 суток.
Факт знания палеолитическим человеком Сибири столь длительного периода времени, как большой сарос, можно подтвердить, стоит лишь допустить, что каждая лунка ее представляет собой знак одного года — тропического или драконического. Уверенность в том, что такой интерпретационный шаг оправдан и, более того, закономерен, а также необходим, определяется лежащим буквально на поверхности фактом: спирали правой части пластины (54 и 57) представляют собой самые короткие записи большого сароса, причем в первом случае — в тропических годах, а во втором — в драконических. В самом деле,
18 тропических лет, составляющих простой сарос 3 = 54 года,
19 драконических лет, составляющих простой сарос 3 = 57 лет.
Отсюда следует, что размещенные друг над другом спирали 54 и 57 правой периферии пластины представляют собой своеобразную запись превосходно известного в календарно-астрономических расчетах равенства:
54 тропических года и 33 (или 32) дня = 57 драконических лет (с ничтожной разницей в пределах 1,272—2,272 суток).
Что касается 33(32) суток, которыми должно быть завершено счисление 54 тропических лет для выравнивания их со временем 57 драконических лет, то просчет их мог осуществляться следующим образом: после прохода по лункам змеевидной линии 11 счисление производилось по лункам внешнего витка центральной спирали. В таком случае участок сближения последних с лунками нижнего отдела спирали 57 + 1 точно отметит эти сутки. Иной вариант равенства при том же условии (каждая лунка равна одному тропическому или драконическому году) отражают структуры левой периферии пластины. Как удалось установить в ходе расшифровки, они с наибольшей вероятностью представляют орнаментально-числовую запись, в которой добавочные сутки прибавлялись не к тропическим, а к драконическим годам. В самом деле, если 59(45 + 14) тропических лет = 62 драконических года + 58,838 суток, то в записи на пластине это выглядит следующим образом:
Недостающие в правой части равенства 58,838 суток рациональнее всего счислять по спирали 57 + 1 правой периферии пластины.
После анализа формул-записей периферийных структур остается определить, какой период могли отражать знаки центральной спирали. При условии, что каждая из ее лунок обозначает один тропический год, она может быть представлена в качестве записи 4,5 цикла большого сароса:
243: 54 = 4,5 большого сароса.
Но закономерен вопрос: как в свете принятого условия (лунка обозначает один год) следует расшифровать весь орнамент мальтинской пластины? Ответ прост — как нечто целостное узор так называемой пряжки или бляхи представляет собой своеобразную криволинейно-числовую формулу чрезвычайно примечательного календарно-астрономического периода, продолжительность которого составляет девять больших саросов или 486 тропических лет:
11 + 54 + 57 + (242 + 1) + 62 + 45 + 14 = 486 = 54 9.